A “pseudo-polynomial” algorithm for the Frobenius number and Gröbner basis - Archive ouverte HAL
Article Dans Une Revue Journal of Symbolic Computation Année : 2024

A “pseudo-polynomial” algorithm for the Frobenius number and Gröbner basis

Un Pseudo-polynomial algorithme pour calculer le Nombre de Frobenius et Bases de Groebner

Résumé

Given $n\geqslant 2$ and $a_1,\ldots,a_n\in \bn.$ Let $S=\left\langle a_1,\ldots,a_n\right\rangle $ be a semigroup. The aim of this paper is to give an effective pseudo-polynomial algorithm on $a_1$, which computes the Ap\'ery set and the Frobenius number of $S$. We also find the \gbb of the toric ideal defined by $S$, for the weighted degree reverse lexicographical order $\prec _{w}$ to $x_1,\ldots ,x_n$, without using Buchberger's algorithm. As an application we introduce and study some special classes of semigroups. Namely, when $S$ is generated by generalized arithmetic progressions and generalized almost arithmetic progressions with the ratio a positive or a negative number. We determine symmetric and almost symmetric semigroups generated by a generalized arithmetic progression.
Fichier non déposé

Dates et versions

hal-04151557 , version 1 (05-07-2023)

Identifiants

Citer

Marcel Morales, Nguyen Thi Dung. A “pseudo-polynomial” algorithm for the Frobenius number and Gröbner basis. Journal of Symbolic Computation, 2024, 120, pp.102233. ⟨10.1016/j.jsc.2023.102233⟩. ⟨hal-04151557⟩
22 Consultations
0 Téléchargements

Altmetric

Partager

More