Pré-Publication, Document De Travail Année : 2023

Algorithms for computing norms and characteristic polynomials on general Drinfeld modules

Résumé

We provide two families of algorithms to compute characteristic polynomials of endomorphisms and norms of isogenies of Drinfeld modules. Our algorithms work for Drinfeld modules of any rank, defined over any base curve. When the base curve is $\mathbb P^1_{\mathbb F_q}$, we do a thorough study of the complexity, demonstrating that our algorithms are, in many cases, the most asymptotically performant. The first family of algorithms relies on the correspondence between Drinfeld modules and Anderson motives, reducing the computation to linear algebra over a polynomial ring. The second family, available only for the Frobenius endomorphism, is based on a formula expressing the characteristic polynomial of the Frobenius as a reduced norm in a central simple algebra.
Fichier principal
Vignette du fichier
norm-hal-v3.pdf (441.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04151171 , version 1 (05-07-2023)
hal-04151171 , version 2 (11-12-2023)
hal-04151171 , version 3 (27-01-2024)
hal-04151171 , version 4 (17-11-2024)

Licence

Identifiants

Citer

Xavier Caruso, Antoine Leudière. Algorithms for computing norms and characteristic polynomials on general Drinfeld modules. 2023. ⟨hal-04151171v3⟩
261 Consultations
140 Téléchargements

Altmetric

Partager

More