Antioxidant and Anti-Breast Cancer Properties of Hyaluronidase from Marine Staphylococcus aureus (CASMTK1)
Résumé
This work studied the antioxidant and anti-breast cancer properties of hyaluronidase, extracted from a potential marine strain, Staphylococcus aureus (CASMTK1), isolated from Parangipettai coastal waters in southeast coast of India. The Staphylococcal enzyme production was tested under different carbon and nitrogen sources; and recorded the maximum production when the microbial strain was cultured with starch as the carbon source and ammonium sulphate as the inorganic nitrogen source with the enzyme production of 92.5 U/mL and 95.0 U/mL, respectively. The hyaluronidase enzyme production was also tested in different pH and temperature; and recorded the maximum yield of 102.5 U/mL in pH 5 and that of 95.5 U/mL in 45 °C. The partially purified enzyme was subjected to FTIR and FT Raman technique and found the presence of the amide- I and II, Carboxyl, N-H bending, C-H stretching and α-helices and β-sheet proteins between wave number 1500–1700 cm−1. The partially purified enzyme also exhibited strong antioxidant and in-vitro breast cancer properties. The enzyme showed the highest hydroxyl radical scavenging activity of 79% at the 50 µg/mL concentration, and this activity increased in a dose-dependent manner. The enzyme inhibited proliferation of the breast cancer cell line of MCF-7, and it caused 100% cell death at the concentration of 80 µg/mL. The enzyme generated capacity of producing free radicles that damage the cancer cells, and this effect was very nearer to the standard drug, paclitaxel. The enzyme damaged the cancer cells and induced apoptosis in 78% of cancer cells as evident by condensed or fragmented chromatin at 40 µg/mL. Further purification of the enzyme, analysis of its molecular aspects, and elucidation of exact mechanisms of its biological activities will throw new light on the utility of staphylococcal hyaluronidase in anticancer chemotherapy.