Leveraging sparsity with Spiking Recurrent Neural Networks for energy-efficient keyword spotting - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Leveraging sparsity with Spiking Recurrent Neural Networks for energy-efficient keyword spotting

Résumé

Bio-inspired Spiking Neural Networks (SNNs) are promising candidates to replace standard Artificial Neural Networks (ANNs) for energy-efficient keyword spotting (KWS) systems. In this work, we compare the trade-off between accuracy and energy-efficiency of a gated recurrent SNN (Spik-GRU) with a standard Gated Recurrent Unit (GRU) on the Google Speech Command Dataset (GSCD) v2. We show that, by taking advantage of the sparse spiking activity of the SNN, both accuracy and energy-efficiency can be increased. Lever-aging data sparsity by using spiking inputs, such as those produced by spiking audio feature extractors or dynamic sensors, can further improve energy-efficiency. We demonstrate state-of-the-art results for SNNs on GSCD v2 with up to 95.9% accuracy. Moreover, SpikGRU can achieve similar accuracy than GRU while reducing the number of operations by up to 82%.
Fichier principal
Vignette du fichier
ICASSP23_final.pdf (804.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04149763 , version 1 (12-07-2023)

Identifiants

Citer

Manon Dampfhoffer, Thomas Mesquida, Emmanuel Hardy, Alexandre Valentian, Lorena Anghel. Leveraging sparsity with Spiking Recurrent Neural Networks for energy-efficient keyword spotting. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023), Jun 2023, Ixia-Ialyssos, Greece. ⟨10.1109/ICASSP49357.2023.10097174⟩. ⟨hal-04149763⟩
65 Consultations
152 Téléchargements

Altmetric

Partager

More