Towards Learning Human-Like and Efficient Multi-Agent Path Finding - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Towards Learning Human-Like and Efficient Multi-Agent Path Finding

Résumé

Simulating trajectories of virtual crowds is a commonly encountered task in computer graphics. It significantly overlaps with the broader field of multiagent path finding, having the same central goal, but with different desired characteristics of motion. Several recent works have applied Reinforcement Learning methods to animate virtual crowds, however they often make quite different design choices when it comes to the fundamental simulation setup. Each of these choices comes with a reasonable justification for its use, so it is not obvious what is their real impact, and how they affect the results. In this work, we build upon our recent research where we study the impact of these arbitrary design choices in terms of their impact on the learning performance, as well as the quality of the resulting motion. We extend it with a more in-depth analysis of the reward function, its structure and properties. We introduce a simple framework for modelling the reward function that enables studying its properties without performing a relatively costly RL training. We also show some of our findings on how certain specific reward functions succeed or fail at producing believable behavior in different scenarios.
Fichier principal
Vignette du fichier
Crowd_rewards___AAAI_Workshop__HAL_.pdf (598.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04147532 , version 1 (25-08-2023)

Licence

Identifiants

  • HAL Id : hal-04147532 , version 1

Citer

Ariel Kwiatkowski, Vicky Kalogeiton, Julien Pettré, Marie-Paule Cani. Towards Learning Human-Like and Efficient Multi-Agent Path Finding. 2023. ⟨hal-04147532⟩
129 Consultations
109 Téléchargements

Partager

More