Construction of polynomial particular solutions of linear constant-coefficient partial differential equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Construction of polynomial particular solutions of linear constant-coefficient partial differential equations

Résumé

This paper introduces general methodologies for constructing closed-form solutions to linear constant-coefficient partial differential equations (PDEs) with polynomial right-hand sides in two and three spatial dimensions. Polynomial solutions have recently regained significance in the de- velopment of numerical techniques for evaluating volume integral operators and also have potential applications in certain kinds of Trefftz finite element methods. The equations covered in this work include the isotropic and anisotropic Poisson, Helmholtz, Stokes, linearized Navier-Stokes, sta- tionary advection-diffusion, elastostatic equations, as well as the time-harmonic elastodynamic and Maxwell equations. Several solutions to complex PDE systems are obtained by a potential representation and rely on the Helmholtz or Poisson solvers. Some of the cases addressed, namely Stokes flow, Maxwell’s equations and linearized Navier-Stokes equations, naturally incorporate divergence constraints on the solution. This article provides a generic pattern whereby solutions are constructed by leveraging solutions of the lowest-order part of the partial differential operator (PDO). With the exception of anisotropic material tensors, no matrix inversion or linear system solution is required to compute the solutions. This work is accompanied by a freely-available Julia library, ElementaryPDESolutions.jl, which implements the proposed methodology in an efficient and user-friendly format.
Fichier principal
Vignette du fichier
2306.13628.pdf (306.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04146453 , version 1 (30-06-2023)
hal-04146453 , version 2 (21-12-2023)
hal-04146453 , version 3 (25-02-2024)
hal-04146453 , version 4 (16-03-2024)

Identifiants

Citer

Thomas G. Anderson, Marc Bonnet, Luiz M. Faria, Carlos Pérez-Arancibia. Construction of polynomial particular solutions of linear constant-coefficient partial differential equations. 2023. ⟨hal-04146453v2⟩
132 Consultations
190 Téléchargements

Altmetric

Partager

More