Asymptotic ultimate regime of homogeneous Rayleigh–Bénard convection on logarithmic lattices - Archive ouverte HAL
Article Dans Une Revue Journal of Fluid Mechanics Année : 2023

Asymptotic ultimate regime of homogeneous Rayleigh–Bénard convection on logarithmic lattices

Résumé

We investigate how the heat flux $Nu$ scales with the imposed temperature gradient $Ra$ in homogeneous Rayleigh–Bénard convection using one-, two- and three-dimensional simulations on logarithmic lattices. Logarithmic lattices are a new spectral decimation framework which enables us to span an unprecedented range of parameters ( $Ra$ , $Re$ , $\Pr$ ) and test existing theories using little computational power. We first show that known diverging solutions can be suppressed with a large-scale friction. In the turbulent regime, for $\Pr \approx 1$ , the heat flux becomes independent of viscous processes (‘asymptotic ultimate regime’, $Nu\sim Ra ^{1/2}$ with no logarithmic correction). We recover scalings coherent with the theory developed by Grossmann and Lohse, for all situations where the large-scale frictions keep a constant magnitude with respect to viscous and diffusive dissipation. We also identify another turbulent friction-dominated regime at $\Pr \ll 1$ , where deviations from the Grossmann and Lohse prediction are observed. These two friction-dominated regimes may be relevant in some geophysical or astrophysical situations, where large-scale friction arises due to rotation, stratification or magnetic field.
Fichier principal
Vignette du fichier
main.pdf (568.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04141097 , version 1 (26-06-2023)

Licence

Identifiants

Citer

Amaury Barral, Berengere Dubrulle. Asymptotic ultimate regime of homogeneous Rayleigh–Bénard convection on logarithmic lattices. Journal of Fluid Mechanics, 2023, 962, pp.A2. ⟨10.1017/jfm.2023.204⟩. ⟨hal-04141097⟩
27 Consultations
130 Téléchargements

Altmetric

Partager

More