Efficient hybrid model for intrusion detection systems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Efficient hybrid model for intrusion detection systems

Résumé

This paper proposes a new hybrid ML model that relies on both K-Means clustering and the Variational Bayesian Gaussian Mixture model to efficiently detect unknown network attacks. The proposed model first classifies the input data into various clusters using K-Means. Then, it identifies anomalies in those clusters using the Variational Bayesian Gaussian Mixture model, to be then classified as unknown. The proposed model shows promising results when identifying whether a data point is an attack or not with an F1 score of up to 91\%, such that the Variational Bayesian Gaussian Mixture model detected up to 86\% of unknown attacks. The conducted experiments shows acceptable performances, where the predictive pipeline took around 2.42 seconds to be processed.
Fichier principal
Vignette du fichier
Secrypt2022.pdf (782.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04137867 , version 1 (22-06-2023)

Identifiants

Citer

Nesrine Kaaniche, Aymen Boudguiga, Gustavo Gonzalez-Granadillo. Efficient hybrid model for intrusion detection systems. 19th International Conference on Security and Cryptography (SECRYPT), Jul 2022, Lisbon, Portugal. pp.694-700, ⟨10.5220/0011328300003283⟩. ⟨hal-04137867⟩
43 Consultations
46 Téléchargements

Altmetric

Partager

More