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Abstract:
This paper proposes a new hybrid ML model that relies on K-Means clustering and the Variational
Bayesian Gaussian Mixture models to efficiently detect and classify unknown network attacks.
The proposed model first classifies the input data into various clusters using K-Means. Then, it
identifies anomalies in those clusters using the Variational Bayesian Gaussian Mixture model. The
model has been tested against the CICIDS 2017 dataset that contains new relevant attacks and
realistic normal traffic, with a reasonable size. To balance the data, undersampling techniques were
used. Furthermore, the features were reduced from 78 to 28 using feature selection and feature
extraction methods. The proposed model shows promising results when identifying whether a data
point is an attack or not with an F1 score of up to 91%.

1 Introduction

During the past decade, Machine Learning
(ML) technologies have gained an expanding in-
terest, enabling automation, accurate predictions
and classification results from complex models,
that are made possible and more efficient thanks
to advanced processing resources [Zhavoronkov
et al., 2018]. From this perspective, various re-
search works started to investigate the implemen-
tation of ML for diverse tasks such as malware
analysis, intrusion detection, log analysis, threat
classification, etc., in order to enhance the secu-
rity by design principle in next-generation net-
works. The intersection between ML and cyber-
security has been studied for more than three
decades, and both domains are recently experi-
encing a blooming stage due to the increasing
deployment of next-generation networks in the
society. ML, on the one hand, offers impor-
tant capabilities to analyse threats and attacks
in various network systems, enabling comprehen-
sive and in-depth defense strategies. However,
ML algorithms are raising several questions re-
garding their effectiveness in real-world scenarios.
For instance, the lack of interpretability of many
learning models makes it hard to develop defen-
sive mechanisms against sophisticated attacks.
Cybersecurity, on the other hand, provides the

means to protect data from intrusions or at-
tacks that usually lead to high economic losses,
personal information leaks and reduced qual-
ity and productivity of organisations. Intrusion
Detection Systems (IDSs) are efficient counter-
measures for detecting inappropriate use of host
machines or networks and providing information
security. IDSs monitor and analyse events to de-
tect any deviations from a regular behaviour.

Several machine learning methods have been
implemented to decrease the false positive rate of
anomaly-based IDSs, including Extreme Learn-
ing Machine (ELM) [Singh et al., 2015] and Sup-
port Vector Machine (SVM) [Feng et al., 2014,
Gonzalez-Granadillo et al., 2019,Boudguiga et al.,
2020]. However, most of these approaches only
use supervised learning algorithms that strongly
rely on the accurate labeling of the training
dataset and are tested against outdated datasets.

This paper investigates the application of ML
algorithms in Intrusion Detection Systems (IDSs)
and provides a detailed evaluation of existing
ML methods and their applications to different
network systems. It proposes a new ML-based
IDS model that relies on a hybrid approach that
uses supervised and unsupervised algorithms to
efficiently detect complex and sophisticated at-
tacks (e.g., known and unknown). The proposed
model first classifies the input data into vari-



ous clusters using K-Means. Then, it identifies
anomalies in those clusters using the Variational
Bayesian Gaussian Mixture model. Conducted
experiments show promising results reaching 91%
of F1-scores in the supervised classification and
up to 86% in the unsupervised classification.
The remainder of this paper is as follows. Sec-
tion 2 describes the proposed model and discusses
the core processing blocks. Section 3 details our
methodology, including selected data-sets, differ-
ent types of data pre-processing and selection
techniques. Section 4 presents preliminary exper-
imental results, before concluding in Section 5.

2 Proposed Solution: Hybrid
AI-based Model for IDS

The proposed solution introduces a novel ML
based IDS model that relies on a combination
between supervised and unsupervised learning in
order to efficiently detect complex and sophisti-
cated attacks, as depicted in Figure 1. Indeed, an
unsupervised clustering algorithm, i.e., K-means,
will first separate into clusters normal and ab-
normal behaviours. K-means is chosen because
it ensures a low computation overhead. Second,
the identified clusters will be labelled, by consid-
ering the location of the majority of the points
in each cluster. Then, the boundary’s/thresholds
for each of those datasets will be set using the
Variational Bayesian Gaussian Mixture model.
All of the points that have a probability of be-
longing to a cluster smaller than the threshold
will be classified as potential new and unknown
attacks. Finally,all the points clustered as attacks
by K-means will be processed using a supervised
algorithm to be classified into different attacks.
data that are classified as normal by K-Means
will keep this classification.

2.1 Training

After the preprocessing, the data goes through
the K-Means algorithm which separates all the
data points into clusters. Then, these clusters
are labelled with respect to the majority of the
classes they are compromised from (i.e., Normal
or Attack). Next, the Variational Bayesian Gaus-
sian Mixture method, as depicted in Figure 1, dis-
regards non-important clusters by giving them a
weight close to zero and so not all clusters will be
considered. Note that a threshold can be set to se-
lect only significant clusters. Given that the limit

Figure 1: High Level Description of Proposed Method

is set, a vector will be returned by the model con-
taining all the important components IC for each
point in a cluster. Lastly for each of the clusters
a threshold is computed as t = avg(max(IC),
where IC is the important components vector and
the resulting t is the probability threshold for one
cluster. Once these thresholds for all clusters are
set the training phase is over.

2.2 Prediction

After preprocessing, the prediction data are given
as inputs to the K-Means algorithm. As such,
the data points will be assigned to their re-
spected clusters. Just like in training, these
clusters will be passed on to the Variational
Bayesian Gaussian Mixture which will return the
important components of each point. Then the
max(IC) for each point of the cluster will be cal-
culated. It corresponds to the probability that
the point belongs really to the cluster assigned
by the K-Means. This probability is formulated
as P (x|c) = max(IC), where x is a data point,
c is a cluster and IC is the important compo-
nents vector of that datapoint. Lastly, once this
is calculated the following expression will be ex-
ecuted to see if the point belongs to the cluster,
P (x|c) < t. That is, if the probability that the
point belongs to the given cluster assigned by K-



means is lower than the threshold for that cluster
which was set in the training phase, then it will
be classified as new/unknown attack.

3 Validation Methodology

3.1 Selected Datasets

Two publicly available datasets for intrusion de-
tection systems have been studied and compared:
(i) NSL-KDD1 thanks to its large use in previ-
ous works for fair comparison with other works;
and (ii) CICIDS-20172 one of the newest publicly
available datasets. CICIDS is more interesting
than NSL-KDD as it contains samples inspired
from real world examples, and it covers all crite-
ria for building a reliable benchmark dataset as
described by Gharib et al. [Gharib et al., 2016].

The NSL-KDD dataset is a modified version
of the KDD CUP 99 dataset. It claims to solve
some of the core problems of the of the previ-
ously widely used KDD CUP 99 dataset by re-
moving the redundant records. As such, the clas-
sifiers will not be biased towards more frequent
records. Attacks in this dataset fall into 4 dis-
tinct categories: Denial of Service Attack (DoS),
User to Root Attack (U2R), Remote to Local At-
tack (R2L), and Probing Attack (Probe).

The CICIDS-2017 consists of 14 different at-
tacks grouped into 9 categories: Brute Force FTP,
Brute Force SSH, DoS, Heartbleed, Web Attack,
Infiltration, PortScan, Botnet and DDoS. All of
which are realistic and very common attacks. In
addition it consists of 80 features, extracted us-
ing the CICFlowMeter3. Moreover, this dataset
was built with the top priority of generating real-
istic background traffic. This was achieved using
a proposed B-Profile system [Sharafaldin et al.,
2018] profiling human interaction abstract be-
haviour and generating naturalistic, benign back-
ground traffic.

3.2 Imbalanced Datasets

The NSL-KDD dataset is class balanced with 52
percent of normal labels and 48 percent of attack
labels. However, the distribution of attacks in the
4 categories is uneven, with DoS attacks having

1https://www.unb.ca/cic/datasets/nsl.html
2https://www.unb.ca/cic/datasets/ids-2017.html
3https://pypi.org/project/cicflowmeter/

the biggest weight in the dataset and the U2R at-
tack count being very small. This can potentially
bias the model. To fix this issue, it is recom-
mended to add new attack labels in the dataset
to balance it better, since a resampling technique
would result in redundant records.

The distribution of the normal and attack la-
bels in the CICIDS-2017 dataset is uneven with
80 percent of normal labels vs 20 percent of attack
labels. Even though the dataset is imbalanced, it
is more realistic, since in the real world, we do
not get as many instances of attacks as we get
of normal network traffic. For these experiments,
we used a random undersampling technique to
balance this large dataset.

3.3 Classification Algorithms

The first algorithm of our proposed approach
deals with unsupervised learning problem. In this
case, K-means seems to be the best fit thanks
to its simplicity and speed at which the predic-
tions are generated. It is crucial to have a fast
prediction time when implementing intrusion de-
tection systems. Furthermore, algorithms like
Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) tend to leave outliers out
of the clusters and this is not optimal for these
kind of systems since those outliers could be a
minority of attacks. The second algorithm of our
proposed approach is used to detect anomalies
in clusters. The Variational Bayesian Gaussian
Mixture is the selected algorithm because there
is a smaller chance to end up in a local mini-
mum considering that we only need to specify the
maximum number of clusters to build the model,
the algorithm will then find the actual number of
clusters and set the weight of non-relevant clus-
ters very close to zero [Nasios and Bors, 2006].

3.4 Performance Metrics

This section describes our evaluation metrics:

• Accuracy: It refers to the ratio of cor-
rectly predicted observations divided by the
number of all observations, as Accuracy =

TP+TN
TP+TN+FP+FN

• Precision: It refers to the ratio of
positively predicted observations divided by
the total positive observations predicted as
Precision = TP

TP+FP . High precision refers
to the small false positive rate.

• Recall: It refers to the proportion of cor-
rectly predicted positive observations divided



by all observations in a positive class, as
Recall = TP

TP+FN .

• F1 Score: It refers to the weighted av-
erage of Precision and Recall, as F1 =
2·precision·recall
precision+recall . This rating brings into con-

sideration both false positives and false nega-
tives. F1 Score is the most suitable metric to
find an equilibrium between Precision and Re-
call in a problem with irregular distribution.

3.5 Implementation

The proposed model is implemented using
Python. The main libraries used for this model
includes pandas4, and Scikit-Learn5. As de-
picted in Figure 2, the initial step in the imple-
mentation process is to import the data. For
this implementation, we have selected the CI-
CIDS 2017 dataset, which has been preprocessed,
cleaned and balanced before splitting it in two
main groups: (i) instances containing only nor-
mal activities, and instances containing attacks
(e.g., Bot, Heartnleed, DoS Slowhttptest). 80% of
the dataset has been used for training and the re-
mainging 20% were used for testing. The training
dataset is further split into two subsets: (i) the
training subset, containing 80% of the selected
training instances, (ii) the validation subset, con-
taining 20% of the selected training instances.
The validation serves to evaluate the model with
different configurations during pre-production.

Once the dataset is split, all NaN values were
replaced by the mean values of each column. Af-
ter this process, data standardisation was per-
formed by using the StandardScaler process
from the Scikit-Learn library. Next step is fea-
ture selection. To carry out this task, the random
forest classifier from the Scikit-Learn li-
brary was used. It was trained with the
train dataset and with the hyperparameters of
n estimators = 100 and max depth = 2 all the
others were set to default. For the test set, only
49 out of the total of 78 features are considered as
important. Therefore, all the features were cho-
sen to build the models. As a feature extraction
method, Principal Component Analysis (PCA)
was used to fit the training data to avoid bias.
The hyperparameters used were: n componets
= number of features (49 as taken from the
feature selection), svd solver = ’randomized’
and iterated power = 30. The last step in the

4https://pandas.pydata.org/
5https://scikit-learn.org/stable/

Figure 2: Preprocessing flowchart

preprossesing is to decide how many of PCA com-
ponents are kept by computing and plotting the
PCA variances for all clusters. Considering that
after 28 features, the variances do not change, the
hyperparameters chosen for the PCA algorithm
are n components = 28, and max iter = 200.

The implementation of our proposed model
considers implementing K-Means and the Vari-
ational Bayesian Gaussian Mixture algorithms.

3.5.1 K-Means

During K-Means implementation for clustering
data, we tried two methods for fixing the clus-
ter numbers (i) the elbow method and (ii) the
cross validation with PCA using the development
dataset so that the inertia converges. Inertia is
the sum of squared distances of samples to their
closest cluster centre. Unfortunately, when test-



ing with the development set none of them yielded
high accuracy results. Therefore, we tested all the
accuracy’s on the training and development tests
starting with 2 clusters until reaching 50 clusters.
We then picked the number of clusters with the
highest accuracy. As shown in Figure 3, 46 clus-
ters provide the highest accuracy level (i.e., 91%
of accuracy). All the tests are done in 200 itera-
tions. It is worth noting that both development
and train sets have almost equal accuracy levels.

To calculate the accuracy of the model, the
number of points belonging to each label (Normal
or Attack), was measured and the cluster was as-
signed the label of the class it had the majority of
samples in, since we actually had labelled data.

Figure 3: K-Means accuracy plot

3.5.2 Variational Bayesian Gaussian
Mixture

Bayesian Gaussian Mixture models were used to
calculate the probability of a point belonging to
the cluster. As stated in the aforementioned sec-
tions, the algorithm returns the probability of a
point belonging to any of the clusters, these num-
bers are called components. Since they are prob-
abilities, their sum is one, this means for this ap-
proach to work we must take a look at only the
important components. We set a threshold to
0.05 after testing with the train and validation
sets. The algorithm takes only the components
that are equal to or bigger than the threshold for
each of the training clusters. Then, the validation
set is used to predict the probability of the points
belonging to each of those clusters. Once done,
only the biggest of those components is taken for
each point in the cluster and as a last step they
are averaged (as discussed in section 2.1).

4 Implementation Results

4.1 Clusters’ Visualization

Figure 4(a) depicts the actual clusters with the
real labels of the test data that are used for eval-
uation proposes. Let us recall that a model is
considered as perfect if it is able to predict exact
same clusters. Figure 4(b) shows the clusters that
are predicted through the different conducted ex-
periments. We note that the test set does not
contain any new attacks. If we look closely at
Figure 4, we notice that there exist some minor
points which are wrongly classified.

In order to evaluate the classification capabil-
ities of the proposed methodology, we considered
a single set composed by the concatenation of the
test set and the set of new attacks, as shown in
Figure 4(c). The resulting clusters belong to both
known and unknown attacks. We note that in
Figure 4(c), there is a whole new ”line” in pur-
ple. The data points in this line belong to the new
attacks that were not present during the training
of the model. These are the data points that our
solution aims at detecting and classifying.

(a) Real Clusters (b) Predicted Clusters

(c) Predicted Clusters
with New Attacks

Figure 4: Real vs Predicted Clusters

4.2 Evaluation Results

This section details the evaluation results of the
proposed model with different configurations and
discusses the computation overheads.

4.2.1 Evaluation with 46 Clusters

The first configuration considers 46 clusters. It
was evaluated with respect to the selected met-
rics, as detailed in section 3.4. For the K-Means



Table 1: Normal / Attack Detection with 45 and 46
Clusters Evaluation Results

No of Clusters 45 46

F1 score 89% 91%
Recall 94% 95%
Precision 85% 88%
Accuracy 89% 91%

algorithm, we used the test set, to estimate the
number of both attacks and normal data points
that are correctly predicted. The F1 score was
0.91% while the Recall score 0.95%. Furthermore,
the precision score was 0.88% and the accuracy
score was 0.91% as shown in Table 1.

To evaluate the capacity of the Variational
Bayesian Gaussian Mixture for efficiently detect-
ing new attacks, we first implemented the pre-
diction pipeline with the test set. Then, we
assessed the pipeline algorithms using the at-
tacks’ dataset. Afterwards, both predictions are
concatenated into one data-frame and evaluated.
This concatenation permits to identify the real la-
bels and evaluate the results accordingly, since all
of the datapoints in the unknown attacks should
be set to unknown and all the datapoints in the
test set to known. The results of this evalua-
tion are depicted in 5(a). The results are shown
in a normalised confusion matrix in order to pro-
vide human-centric accurate results. From Figure
5(a), we deduce that the results of our evaluation
with 46 clusters are fairly good, 62% of the un-
known labels are correctly predicted.

4.2.2 Evaluation with 45 Clusters

As detailed in section 4.2.1, we conduct the same
evaluation pipeline while considering 45 clusters,
in order to assess their impacts on the prediction
accuracy. In fact, we assumed that the obtained
results with 46, even though considered as good,
may be improved. For this purpose, we conduced
a trial with less clusters and evaluated the dif-
ferent metrics. This second configuration, i.e.,
45 clusters resulted in an improved accuracy in
predicting unknown attacks compared to the first
setting. However, it negatively impacted the eval-
uation of K-Means. The F1 score dropped down
to 0.89% and the Recall score to 0.94%. Further-
more, the Precision score stepped down to 0.85%
and the total accuracy score to 0.89%.

(a) Confusion matrix (46
clusters)

(b) Confusion matrix (45
clusters)

Figure 5: Comparison of Confusion Matrix results
obtained for the different clusters

4.3 Discussion

Figure 4(a) presents a common illustration of the
real attack and normal clusters. It is difficult to
distinguish one cluster from the other one since
they are merged. This is mainly due to the close
behaviour between a normal and an attack event.
In our conducted experiments, two configurations
are evaluated, one using 45 and another using 46
clusters. This latter showed better results using
the validation dataset, thanks to the similar be-
haviour of normal and attack events. Given that,
the selected criteria to identify if a cluster is nor-
mal or malicious is the class of the majority of
events, a higher number of clusters broke down
the events in a way that could improve the clas-
sification accuracy of the clusters.

The number of clusters to use resolves the
trade-off between the accuracy to detect nor-
mal/attack events and the good performance
of the model to classify known/unknown ones.
Thus, based on each setting’s requirements, i.e.,
to classify or detect known/unknown attacks, our
results showed that it is more convenient to use
the model with 45 clusters for classification and
46 clusters for detection. Moreover, in both cases,
the accuracy to classify normal/attack events is
still high (at least 89%).

The precision and recall scores for the model
using 45 clusters are fairly high. The precision
metric indicates that 85% of the events classified
by the model as attacks, are correct, meaning that
the model has a small false positive rate. The
recall metric indicates that 94% of the real at-
tacks are correctly predicted. The F1 score (or
the weighted average of precision and recall) was
equal to 89%. This metric shows that the general
detection rate of the combined models is good.
The confusion matrix is helpful to analyse the
known/unknown predictions of the models. The
model using 45 clusters was the best model since



only 0.1% percent of the known events were mis-
classified as unknown, and only 0.14% of the un-
known events were misclassified as known.

The model using 46 clusters obtained the same
results as the model using 45 clusters when pre-
dicting the known events. This shows that the
difficulty in the model lies in detecting the un-
known attacks. Using 46 clusters, the model mis-
classified 38% of the unknown events, which are
24% more than the model using 45 clusters.

5 Conclusion

This paper presented a hybrid approach to
tackle the problem of implementing intrusion de-
tection systems using machine learning models.
The CICIDS 2017 dataset has been chosen, since
it contains new relevant attacks and realistic nor-
mal traffic, with a reasonable size. The normal
and attack data points were unbalanced, to bal-
ance the data undersampling technique was used.

The highest performance for the K-Means
clustering was obtained with 46 clusters. The F1
score was 0.91% while the Recall score 0.95% the
Precision score was 0.88% and the Accuracy score
was 0.91%. The highest performance for the Vari-
ational Bayesian Gaussian Mixture model was
obtained with 45 clusters at 90% of the known
attacks predicted as known and 86% of the un-
known predicted as unknown.

Future work will concentrate on evaluating
other ML models and integrating the proposed
solution into a SIEM system in a dynamic set-
ting. This will demonstrate the versatility of
the proposed methodology in ever-evolving en-
vironments. In addition, we will investigate the
use of fully homomorphic encryption as discussed
by [Sgaglione et al., 2019,Boudguiga et al., 2020]
to make the intrusion detection more privacy-
preserving. However, using homomorphic encryp-
tion will require the adaptation of the used mod-
els and may result in a loss of accuracy.
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