How to Think About Benchmarking Neurosymbolic AI? - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

How to Think About Benchmarking Neurosymbolic AI?

Résumé

Neurosymbolic artificial intelligence is a growing field of research aiming at combining neural networks with symbolic systems, including their respective learning and reasoning capabilities. This hybridization can take many shapes which adds to the fragmentation of the field and makes it difficult to compare the existing approaches. If some efforts have been made in the community to define archetypical means of hybridization, many elements are still missing to establish principled comparisons. Amongst those missing elements are formal and broadly accepted definitions of neurosymbolic tasks and their corresponding benchmarks. In this paper, we start from the specific task of multi-label classification with the integration of propositional background knowledge to illustrate how such a benchmarking framework could look like. Based on the benchmarking of one granular task we zoom out and discuss important elements and characteristics of building a full benchmarking suite for more than just one task.
Fichier principal
Vignette du fichier
[NeSy Revised] How to Think About Benchmarking Neurosymbolic AI.pdf (165.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04136556 , version 1 (21-06-2023)

Identifiants

  • HAL Id : hal-04136556 , version 1

Citer

Johanna Ott, Arthur Ledaguenel, Céline Hudelot, Mattis Hartwig. How to Think About Benchmarking Neurosymbolic AI?. 17th International Workshop on Neural-Symbolic Learning and Reasoning -NESY 2023, Jul 2023, Sienne, Italy. ⟨hal-04136556⟩
237 Consultations
138 Téléchargements

Partager

More