FREE CURVES, EIGENSCHEMES AND PENCILS OF CURVES - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

FREE CURVES, EIGENSCHEMES AND PENCILS OF CURVES

Résumé

Let R = K[x, y, z]. A reduced plane curve C = V (f) ⊂ P 2 is free if its associated module of tangent derivations Der(f) is a free R-module, or equivalently if the corresponding sheaf T P 2 (− log C) of vector fields tangent to C splits as a direct sum of line bundles on P 2. In general, free curves are difficult to find, and in this note, we describe a new method for constructing free curves in P 2. The key tools in our approach are eigenschemes and pencils of curves, combined with an interpretation of Saito's criterion in this context. Previous constructions typically applied only to curves with quasihomogeneous singularities, which is not necessary in our approach. We illustrate our method by constructing large families of free curves.
Fichier principal
Vignette du fichier
valles-al-2306.09443.pdf (424.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Domaine public

Dates et versions

hal-04135238 , version 1 (20-06-2023)

Licence

Domaine public

Identifiants

Citer

Jean Vallès, Roberta Di Gennaro, Giovanna Ilardi, Rosa Miro-Roig, Hal Schenck. FREE CURVES, EIGENSCHEMES AND PENCILS OF CURVES. 2023. ⟨hal-04135238⟩
19 Consultations
89 Téléchargements

Altmetric

Partager

More