Optimizing the Accuracy of Randomized Embedding for Sequence Alignment - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Optimizing the Accuracy of Randomized Embedding for Sequence Alignment

Nimisha Chaturvedi
  • Fonction : Auteur
Raja Appuswamy

Résumé

Gapped alignment of sequenced data to a reference genome has traditionally been a computationally-intensive task due to the use of edit distance for dealing with indels and mismatches introduced by sequencing. In prior work, we developed Accel-Align [1], a Seed-Embed-Extend (SEE) sequence aligner that uses randomized embedding algorithms to quickly identify optimal candidate locations using Hamming distance rather than edit distance. While Accel-Align provides up to an order of magnitude improvement over state-of-the-art aligners, the randomized nature of embedding can lead to alignment errors resulting in lower precision and recall with downstream variant callers. In this work, we propose several techniques for improving the accuracy of randomized embedding-based sequence alignment. We provide an efficient implementation of these techniques in Accel-Align, and use it to present a comparative evaluation that demonstrates that the accuracy improvements can be achieved without sacrificing performance. Code is accessible in github.com/raja-appuswamy/accel-align-release.
Fichier principal
Vignette du fichier
publi-6909.pdf (577.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04135226 , version 1 (20-06-2023)

Identifiants

Citer

Yiqing Yan, Nimisha Chaturvedi, Raja Appuswamy. Optimizing the Accuracy of Randomized Embedding for Sequence Alignment. IPDPSW 2022, IEEE International Parallel and Distributed Processing Symposium Workshops, May 2022, Lyon, France. pp.144-151, ⟨10.1109/IPDPSW55747.2022.00036⟩. ⟨hal-04135226⟩

Collections

EURECOM
27 Consultations
67 Téléchargements

Altmetric

Partager

More