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Abstract—Gapped alignment of sequenced data to a reference
genome has traditionally been a computationally-intensive task
due to the use of edit distance for dealing with indels and
mismatches introduced by sequencing. In prior work, we de-
veloped Accel-Align [1], a Seed–Embed–Extend (SEE) sequence
aligner that uses randomized embedding algorithms to quickly
identify optimal candidate locations using Hamming distance
rather than edit distance. While Accel-Align provides up to an
order of magnitude improvement over state-of-the-art aligners,
the randomized nature of embedding can lead to alignment errors
resulting in lower precision and recall with downstream variant
callers. In this work, we propose several techniques for im-
proving the accuracy of randomized embedding-based sequence
alignment. We provide an efficient implementation of these
techniques in Accel-Align, and use it to present a comparative
evaluation that demonstrates that the accuracy improvements can
be achieved without sacrificing performance. Code is accessible
in github.com/raja-appuswamy/accel-align-release.

Index Terms—alignment, mapping, embedding

I. INTRODUCTION

Often the first step, and the most time consuming one,
in analyzing genomic datasets is sequence alignment-—the
process of determining the location in the reference genome
of each sequencing read. Despite the fact that modern gapped
read aligners like BWA-MEM [2], Bowtie2 [3], Minimap2 [4],
SNAP [5] and HISAT2 [6] can map thousands of reads to a
reference genome per second, the sheer size of modern short-
read sequencing datasets often makes sequence alignment one
of the most time consuming steps in genomic data analysis.

The key bottleneck that makes sequence alignment slow is
the need to use edit distance for comparing sequenced reads
with multiple candidate locations in the the reference genome,
combined with the use of affine-gap penalty scoring and soft
clipping to identify an alignment with the best score. The
high computation complexity of such an edit-distance-based
alignment makes exhaustive search of all possible candidate
locations infeasible. Instead, modern aligners typically use a
Seed-Filter-Extend (SFE) strategy for performing alignment.
In SFE, seeds, the subsequences of strings extracted from a
read, are used to look up candidate locations in an indexed
reference. The candidates are then filtered to eliminate unlikely
matches, and the surviving candidates are passed along for
edit-distance-based extension.

The filtering step in SFE plays a crucial role in balancing
the accuracy and performance of a sequence aligner. Most se-

quence aligners use elimination-based filtering techniques, like
count filtering [7], adjacency filtering [8], or shifted hamming
distance [9], that conservatively eliminate candidates without
significantly increasing the probability of misalignment due
to accidental elimination of a true match. In contrast, in
prior work [1], we introduced a new selection-based filtering
scheme based on randomized embedding algorithms [10] that
can embed strings such that edit distance between original
strings can be approximated by the Hamming distance be-
tween embedded strings. Using such embedding algorithms,
we developed Accel-Align [1], a Seed-Embed-Extend (SEE)
sequence aligner that uses the Hamming distance between
embedded reference and embedded read to rank and select,
rather than eliminate, candidates with a high rank.

While we showed that Accel-Align provides 3–10× im-
provement over state-of-the-art aligners at comparable accu-
racy for short reads, we observed that the randomized nature
of the embedding algorithm can result in Accel-Align mapping
reads to the wrong location in some cases. This, in turn, leads
to a drop in accuracy of downstream variant calling using
Accel-Align mapped reads. In this paper, we propose several
techniques for improving the accuracy of the embedding-based
filtering step in SEE-based sequence alignment. We implement
these techniques in Accel-Align, and using a comparative
evaluation demonstrate that the accuracy improvements can
be realized while maintaining the performance advantage over
contemporary aligners.

II. BACKGROUND

In this section, we first provide a brief overview of Accel-
Align. Accel-Align processes reads in three stages, namely,
seeding, embedding, and extension. During seeding, Accel-
Align extracts non-overlapping k-mers from each read and
converts to hash values based on a simple modulo-based hash
function. By default, Accel-Align sets the k-mer size to 32 to
enable a k-mer to fit in a single 64-bit integer, and the hash
value to fit in a 32-bit integer. The generated hash value is
used to lookup a hash table to identify candidate locations.
Once Accel-Align gets the candidate locations by seeding,
it identifies optimal candidates based on the theory of low
distortion embedding. The goal of embedding is to transform
both the reference strings at candidate locations and the read
string to embedded forms such that edit distance between



the original strings can be approximated using the Hamming
distance of embedded strings. Accel-Align extracts strings of
length equal to the read length from the reference genome at
each candidate location, transforms these reference strings and
the query string (which is the read) into embedded strings, and
calculates the Hamming distance between embedded strings.
Finally, Accel-Align picks the top two candidate locations
with the least Hamming distance as the best candidates and
passes them to the extension stage, where a full dynamic-
programming-based edit computation is performed to deter-
mine the alignment score and CIGAR.

As the focus of this work is on improving the accuracy of
embedding, we refer the reader to our prior publication [1]
for further details about indexing and seeding which remain
unchanged for this work. In the rest of this section, we will
provide a detailed description of the randomized embedding
algorithm used by Accel-Align, and illustrate how the ran-
domized nature of embedding could potentially contribute to
a loss in accuracy. In particular, we have implemented two
randomized embedding algorithms in Accel-Align, namely,
3N-Embedding (3NE) that was proposed by Chakraborthy et
al. [10], and 2N-Embedding (2NE) which was a modified
version of 3NE that we proposed concurrently with Zhang
et al. [11]. As Zhang et al. [11] have shown that 2NE and
3NE have similar worst case bounds, and as we have already
demonstrated that 2NE, which is the default embedding algo-
rithm in Accel-Align, is faster than 3NE and works well for
sequence alignment [1], we only provide a description of 2NE.

Algorithm 1 2N -embedding

Input: A string S ∈ {A,C,G, T}N , and 4 random strings
rA, rC , rG, rT ∈ {0, 1}2N

Output: The embedded string S
′ ∈ {A,C,G, T}2N

1: j ← 0
2: for i = 0→ N − 1 do
3: S

′

j ← Si

4: j ++
5: if rs[i]j = 1 then
6: S

′

j+1 ← Si

7: j ++
8: end if
9: end for

10: for j = j + 1→ 2N − 1 do
11: S

′

j ← P
12: end for
13: return S

′

Algorithm 1 presents the pseudocode for the 2NE algorithm.
The input string is a string of length N consisting of four
possible characters (A,C,G,T). The output is a string of length
2N with the same alphabets, and potential multiple repeats of
a pad character (P). In each iteration, the algorithm appends a
character from the input string once or twice to the output
string depending on a random binary bit string associated
with that character. The net effect of this is that some input
characters appear uniquely in the output string, while others

are repeated. Chakraborthy et al. showed that given two strings
x, y of length N such that dE(x, y), the edit distance between
x and y, is less than K, there exists an embedding function f ,
such that the distortion D(x, y) = dH(f(x), f(y))/dE(x, y)
lies in [1, O(K)] with at least 0.99 probability, where dH(x, y)
is the Hamming distance between the embedded strings. In
other words, the Hamming distance of embedded strings
produced by their 3NE algorithm is at most square of the
edit distance between original strings for small values of K.
Zhang et al. showed that the worst case behavior of 2NE is
similar to 3NE.

Accel-Align relies on the Hamming distances between
embedded candidates and the embedded read generated
by 2NE to accurately approximate their corresponding
edit distances. However, in practice, a “bad” random bit
sequence could, in some cases, lead to a large distortion. To
illustrate this, let us consider an example with two strings,
“CTGACTGA” (#1) and “CTCACTGA” (#2). The two strings
have an edit distance of 1. Given below are three different
random sequences, and the embedded versions of these two
strings for each random sequence. Although the edit distance
of the original strings is 1, the Hamming distance between
embedded strings can vary dramatically and even be inflated
to 11 as shown in example 3.

Example 1: 1 mismatch
Random seq for A: 1110001000101000
Random seq for C: 0010111101000001
Random seq for G: 0010000001110110
Random seq for T: 0110000110101111
Embedded #1: CTTGACCTTGGAPPPP
Embedded #2: CTTCACCTTGGAPPPP

Example 2: 4 mismatches
Random seq for A: 0010111101100100
Random seq for C: 0111010011001100
Random seq for G: 0110001101101001
Random seq for T: 1100100101100000
Embedded #1: CTTGAACTTGGAPPPP
Embedded #2: CTTCCAACTGGAPPPP

Example 3: 11 mismatches
Random seq for A: 1001011101001111
Random seq for C: 1010110111011000
Random seq for G: 1001100101001100
Random seq for T: 1101111101101110
Embedded #1: CCTGGAACCTTGAAPP
Embedded #2: CCTCACCTTGGAPPPP

Similarly, mismatches or indels at the beginning of strings
will also lead to higher distortion than those at the end of a
string. For instance, let us consider the string “CTGACTGC”.
Compared to #1, it differs only in its last character. Thus, the
edit distance between them is 1. When the two strings are em-
bedded, the embedded strings will be be identical for the initial
set of characters except the last one. When the embedding



algorithm reaches the last character, depending on whether
the random bit is 0 or 1, the embedded strings will differ
by 1 or at most 2. However, if we consider “ATGACTGA”,
which also has an edit distance of 1, but differs from #1 in
the first character, the Hamming distance of their embedded
strings will depend entirely on the random string. For instance,
it will be embedded to “AATTGACCTTGGAAPP” using the
random string in Example 1, with a Hamming distance of
10, or “ATTGAACTTGGAPPPP” using the random string in
Example 2, with a distance of 1.

Accel-Align embeds each candidate reference only once.
In the general case, the difference in edit distance between
a good candidate location and a bad one is very large. As a
result, despite this randomness, the embedded string obtained
from a good candidate will typically have a lower Hamming
distance than a bad candidate. However, in cases where the
difference in edit distance is not large, or in cases with an
unfavorable random bit string, this randomness can inflate the
Hamming distance of a true match and result in Accel-Align
picking a wrong candidate.

III. METHODS

In this section, we describe the changes we made to Accel-
Align to minimize the accuracy impact of randomization in
2NE without adversely affecting performance.

A. Multiple embedding

A simple strategy for dealing with distortion caused by
embedding is to perform embedding multiple times with the
goal that a high distortion produced by a “bad” random
string will be overridden by a low distortion outcome from
another random string. In the context of Accel-Align, this
translates into the following per read operations: (i) C × R
embedding operations for embedding C candidate locations
R times, (ii) embed the query read itself R times, and (iii)
C × R Hamming distance computations to identify the best
candidate. A naive implementation of multiple embedding will
also require ((C + 1)× 2N × R) bytes of memory per read,
where N is the length of read (each of the C candidates and the
read itself have to be embedded R times, with each embedding
producing a string of length 2N).

During experimentation, we found that the computational
and memory requirements of multiple rounds of embedding
were high. Thus, we implemented a pipelined version of mul-
tiple embedding which works as follows. First, we embed the
read R times. Then, we process each candidate one at a time
by embedding it using a random string and computing the edit
distance from the embedded read based on the same random
string. After computing R Hamming distances, we only keep
the minimum Hamming distance per candidate, and use this
to identify the candidate with the lowest overall minimum.
We adopted this approach as it integrates seamlessly with two
lower-level optimizations already performed by Accel-Align.

First, the embedding algorithm in Accel-Align does not
generate the entire embedded string for each candidate. Rather,
given a candidate location and random string, it generates

Algorithm 2 Embedding

Input: A reference string R ∈ {A,C,G, T}m, a querying
read string Q ∈ {A,C,G, T}n, a normalized candidate
start position sr with |M | matches between the reference
and read whose corresponding start and end indexes are
sri, eri and sqi, eqi, and N times to embed

Output: The candidate’s embedded Hamming distance d
1: dmin = MAX
2: for l = 0← N − 1 do
3: j = 0, string Q̂, R̂
4: for k = 0→ n− 1 do
5: if k /∈ [sqi, eqi),∀i ∈ [0, |M |) then
6: Q̂j = Q̂k

7: R̂j = R̂sr+k

8: ++ j
9: end if

10: end for
11: string Q̂

′
, R̂

′ ← the embedded string of Q̂, R̂
12: d← the Hamming distance between Q̂

′
and R̂

′

13: dmin = min(d, dmin)
14: if dmin == 0 or dmin == 1 then
15: return dmin

16: end if
17: end for
18: return dmin

one embedded character at a time, compares it with the
corresponding character in the embedded read, updates the
Hamming distance, and discards the character. This results
in a CPU-cache-efficient embedding implementation. Second,
the embedding algorithm is parameterized with a threshold
so that it stops embedding as soon the threshold is exceeded.
Instead of storing the embedded distance of all candidates,
Accel-Align already dynamically tracks the lowest and second-
lowest distances, and uses the latter as the threshold parameter.
Our pipelined implementation of multiple embedding exploits
both these optimizations to efficiently track the minimum
embedding distance for each candidate.

We further optimize embedding by doing an early-stop for
a candidate as soon as we find a random string under which
the Hamming distance is computed to be less than or equal to
1. If the embedded Hamming distance is 0, the two embedded
strings must be the same, so the original strings are same
and edit distance is 0. If the embedded Hamming distance
is 1, there is 1 bit different in the embedded strings, same
for the original strings, and the edit distance is 1. In either
case, there is no need to do an additional round of embedding
with a different random string as we have already found the
minimum distance.

B. Chain embedding

Let us consider the string x to represent a read, and string y
to represent a candidate in the reference genome. Originally,
Accel-Align embedded the entire read and an entire candidate
string of length equal to the read. However, any candidate y
identified by Accel-Align must have at least one k-mer that



produced an exact match between the reference and the read
which led to this candidate being identified as a potential
match during seeding. If two strings are identical, their edit
distance, and hence their embedded Hamming distance, will
be zero. Thus, the embedded Hamming distance of all exact
matching k-mers would already be zero. This implies that we
only need to embed the non-matching parts of the read and the
reference. We refer to such an approach as chain embedding,
as it is reminiscent of the way aligners like Minimap2 use
chaining to align gaps between exact matching regions.

Chain embedding improves both performance and accuracy.
It improves performance as it reduces the length of the
string that needs to be embedded. On the accuracy front, as
mentioned earlier, the distortion of the randomized embedding
algorithm depends on the edit distance value K. For any read
x and a reference candidate y, let xi represents the i-th non-
matching substring in the read, yi represents the corresponding
non-matching part in the reference. These substrings are the
parts that are found outside or between exact matching k-
mers. The edit distance between them dE(xi, yi) is Ki, and∑

dE(xi, yi) = dE(x, y) = K. Original Accel-Align embeds
x and y as a whole. Thus, the overall distortion is bounded by
[K,O(K2)]. Our modified Accel-Align with chain embedding,
in contrast, embeds each substring separately. As each Ki is
smaller than K, this should lower the distortion for each chain
embedding, thereby improving accuracy. Putting together mul-
tiple and chain embedding techniques, Algorithm 2 shows the
pseudo-code for the improved embedding algorithm.

C. K-mer Selection

Originally, Accel-Align used non-overlapping k-mers from
a read as seeds. All candidates identified by seeding would
be forwarded to the embedding stage. While this approach
provided competitive performance when we performed em-
bedding only once, preliminary evaluation revealed that mul-
tiple embedding emerged as a computational overhead in
the updated Accel-Align, particularly for single-end reads.
On further examination, we found that a small fraction of
reads that contain k-mers that mapped to several thousands
of candidates disproportionately affected the performance in
the single-end case but not in the paired-end case.

For single-end reads with such k-mers, Accel-Align did not
apply any filtering and thus ends up embedding each candidate
location multiple times. For paired-end reads, however, Accel-
Align already does pair-wise filtering by identifying candidates
from one read that have a matching pair within the specified
distance in the other read. Unlike other aligners, Accel-Align
does this pair-wise filtering in a very efficient fashion before
the embedding stage. Typically, at the end of seeding, we get
two sorted list of candidates, one per read in the pair. Thus,
Accel-Align scans the two lists looking for candidates that lie
within a configurable distance threshold of each other. Due to
the sorted nature of the lists, this operation is done by a quick
search for lower and upper bounds as shown in Algorithm 3.
This pair-wise filtering eliminated several needless embedding
steps resulting in multiple embedding not being an overhead

Algorithm 3 Paired-end filtering

Input: A reference string R ∈ {A,C,G, T}m, a querying
pair-end read with mates Q1, Q2 ∈ {A,C,G, T}n, and
the maximum allowed distance between mates dist

Output: A list of normalized candidate position
1: {pos1i} ← the candidate positions of Q1 gets by single-

end seeding
2: {pos2i} ← the candidate positions of Q2 gets by single-

end seeding
3: list l1, l2
4: for pos1i in {pos1i} do
5: start ← lower bound of pos1i that is not less than

pos1i − dist
6: end ← upper bound of pos1i that is greater than

pos1i − dist
7: if start ̸= end then
8: add pos1i into list l1
9: add positions between start and end into list l2

10: end if
11: end for
12: return l1, l2

Algorithm 4 Single-end filtering

Input: A reference string R ∈ {A,C,G, T}m, a querying
read string Q ∈ {A,C,G, T}n

Output: A list of normalized candidate positions
1: S1, S2, ..., Sk ← get non-overlapping seeds from Q
2: cnt = 0
3: for i = 0← k − 1 do
4: Ci ← count the number of normalized candidate

position of seed Si

5: posi1, posi2, ..., posiCi
← get normalized candidate

position of seed Si

6: if Ci > 1000 then
7: ++ cnt
8: end if
9: end for

10: if cnt > k/2 then
11: {posij} ← all the positions mapped by S1, S2, ..., Sk

12: else
13: {posij} ← the positions mapped by the seeds whose

Ci < 1000
14: end if
15: if exist a position occurs more than once in {posij} then
16: return positions occur more than once in {posij}
17: else
18: return {posij}
19: end if

for paired-end reads. Interestingly, this approach, also referred
to as fuzzy set matching, has also been implemented recently
as an effective filter by SNAP [12] and URMAP [13].

In order to optimize the performance for single-end reads
also, we modify Accel-Align to adopt judicious k-mer selec-
tion similar to FastHASH [8], BWA-MEM and Minimap2.



Fig. 1: Accuracy of single-end simulated datasets.

Fig. 2: Accuracy of pair-end simulated datasets.

During seeding, Accel-Align uses the number of candidates
generated per seed to classify a read. In particular, if more
than half of seeds in the read have more than a threshold
count of candidates (default 1000 similar to Minimap2), we
flag it as potentially belonging to a highly repetitive region.
For such reads, we do not apply any filtering, and forward
all the candidates to the embedding stage. However, for reads
that are not flagged, we apply k-mer selection by only taking
into account k-mers whose candidate count falls below the
threshold. The overall algorithm in given in Algorithm 4.

D. Extension and MAPQ

Accel-Align can be configured to run in alignment-free
mapping mode where only the identified candidate location
is reported, or full-alignment mode where base-by-base ex-
tension is performed and the CIGAR string is reported. For
the mapping mode, we pick the best candidate, which is the
one with the least embedding distance, as the target. Then, we
embed the first seed of the read and the k-mers in reference
genome at multiple positions around the final candidate posi-
tion, and pick the position with the least embedding distance.
This is done to take into account indels in the first few
characters of a read.

For the full-alignment mode, originally Accel-Align did
a global alignment between the read and the substring of
same length in the reference’s candidate position. But we
found the lack of soft clipping to adversely affect accuracy
of downstream variant calling. So the updated Accel-Align
now extracts a substring of length longer than read length
and performs “glocal” alignment using lib-ksw [14] on either

Fig. 3: Throughput for single-end simulated reads.

Fig. 4: Throughput for pair-end simulated reads.

end to support soft clipping. The matching score is set to 2,
mismatching, gap-open and gap-extension penalty are set to
8, 12, 2, to compute the alignment score and CIGAR.

In addition to the CIGAR, Accel-Align also reports a map-
ping quality (MAPQ) that represents the degree of confidence
in the alignment for each read. Previously, Accel-Align used
Bowtie2’s MAPQ estimation procedure [3] adjusted to use the
embedded Hamming distance of the top two candidates in
order to produce a MAPQ value between 0 and 42. However,
using embedded Hamming distance for MAPQ makes the
aligner more conservative in estimating MAPQ which led
slightly lower accuracy during downstream variant calling.
Further, with the addition of chain embedding to Accel-Align,
we no longer compute the end-to-end Hamming distance.
Thus, we have simplified and updated the MAPQ estimation
procedure. Accel-Align now uses the cumulative Hamming
distance obtained from chain embedding for identifying the
top two candidates. If d1 is the least embedded Hamming
distance and d2 is the second least, the MAPQ is computed
as MAPQ = 60 ∗ (1− d1/d2)

2.

IV. RESULTS

In this section, we compare the accuracy and performance
of the updated Accel-Align (v2), with both the older version
of Accel-Align (v1), and three other state-of-the-art short-read
aligners, namely, BWA-MEM (v0.7.17), Bowtie2 (v2.3.5),
Minimap2 (v2.17). All experiments are performed on a server
equipped with a quad-core Intel(R) Core(TM) i5-7500 CPU
clocked at 3.40GHz, 32GB RAM, and a 256GB SATA SSD.



We run each aligner five times, ignored the first “cold” run
and report the average time of last four “warm” runs. We also
tried to evaluate SNAP (v2.0) and BWA-MEM2 (v2.2.1) [15],
but we do not report the results here as they failed due to their
peak memory usage exceeding our server capacity.

A. Simulated data.

We used Mason2 [16] to simulate a VCF file with variants
with default SNP and indel rates from the hg37 reference
genome. We simulated multiple 10M Illumina single-end and
paired-end read datasets of length 100bp, 150bp and 200bp.

1) Alignment evaluation: Fig 1 and Fig 2 report the ac-
curacy of various aligners in terms of fraction of reads cor-
rectly mapped for various single-end and paired-end datasets.
We consider a read to be correctly mapped if the reported
alignment and the Mason-provided alignment overlap by at
least 90%. From the figures we can make two observations.
First, Accel-Align v2 clearly improves accuracy over Accel-
Align v1, especially at longer read lengths. Second, Accel-
Align v2 provides accuracy better than, or comparable to,
Minimap2 under all datasets while lagging behind BWA-MEM
or Bowtie2 by less than 0.2%.

We show the throughput, measured as the number of reads
processed per second per thread, for all aligners in Fig 3 and
Fig 4. We can see that Accel-Align v2 is slightly slower
than v1 for 100bp and 150bp single-end datasets. But in
the paired-end datasets, Accel-Align v2 provides performance
comparable to Accel-Align v1. Analyzing the 10M 100bp pair-
end dataset further, we found that there are 630M candidate
positions before pair filtering, and only 74M positions after
filtering. Thus, as the pair filter eliminates nearly 88% of
candidates, it helps to minimize the overhead of multiple
embedding. This is not the case for single-end dataset leading
to a slow down of Accel-Align v2 over v1. More importantly,
comparing Accel-Align v2 with other aligners, we see that it
is 4∼9× faster than BWA-MEM, 6∼12× faster than Bowtie2
and 2∼3× faster than Minimap2 similar to Accel-Align v1.

2) Alignment-free mapping evaluation: Accel-Align and
Minimap2 provide an alignment-free mapping mode which
does not report the CIGAR. Such mapping is useful in the
applications that only need the position while not requiring a
base-by-base alignment. Hence, we compare the performance
of two aligners in alignment-free mode. Fig 5 shows the
throughput per second per thread for 100bp, 150bp and
200bp pair-end read. Comparing Fig 5 and Fig 4, we see
that the alignment-free mode provides a further 1.15∼1.36×
improvement in throughput over full alignment mode. Second,
Accel-Align is 2.1∼3.2× faster than Minimap2 at all read
lengths (Fig 5) with alignment-free mapping.

3) Multiple embedding microbenchmark: As a key tech-
nique to improving the accuracy is multiple embedding, we
show the relationship between multiple rounds of embedding
(x-axis) and execution time/accuracy (y-axis) in Fig 6 for the
10M 200bp single-end read dataset. We use the alignment-free
mode to highlight the impact of embedding. As expected, the
execution time increases proportionate to the number of rounds

Fig. 5: Alignment-free mapping throughput for pair-end reads.

Fig. 6: Performance and accuracy with multiple embedding

of embedding. However, while accuracy improves 0.25% from
embedding once to embedding three times, the improvement
for higher rounds of embedding is too low to justify the
increase in execution time. This is the reason why Accel-Align
v2 performs three rounds of embedding by default.

B. Real data.

To evaluate Accel-Align v2’s performance on real data,
we use a human whole-exome sequencing dataset that has
150M paired-end reads of length 151bp. We align the reads
to the hg37 reference genome and use GATK HaplotypeCaller
(v4.1.0) [17] for variant calling. We capture variant locations
using the SureSelect Human All Exon v2 target capture kit bed
file (ELID:S0293689), and validate with high confidence vari-
ant calls (v2.19) from Genome in a Bottle (GiaB) containing
23,686 SNVs and 1,258 INDELs.

TABLE I: Evaluation on real data

BWA-MEM Bowtie2 Minimap2 AA-v1 AA-v2
Exec. time HH:MM 7:43 7:31 4:43 1:21 1:21

Ti/Tv 2.84 2.86 2.85 2.62 2.85
Overall F-score 0.990 0.992 0.992 0.991 0.992

TP(SNP) 23521 23457 23521 23447 23508
FP(SNP) 235 79 163 872 146
FN(SNP) 165 229 165 239 178

F-score(SNP) 0.991 0.993 0.993 0.993 0.993
TP(InDels) 1223 1213 1223 1194 1223
FP(InDels) 49 30 27 105 30
FN(InDels) 35 45 35 64 35

F-score(InDels) 0.966 0.970 0.975 0.959 0.974
% Mapped 99.4% 97.1% 99.3% 95.5% 95.4%



Table I presents a comparison of various aligners under
several metrics. The wall-clock time to align 150M paired-
end reads (300M total reads) is reported in the field Exec.
time HH:MM. Similar to the performance with simulated
dataset, Accel-Align v2 is the fastest aligner, providing a 7×
speedup over BWA-MEM and Bowtie2, and 3× speedup over
Minimap2. The second metric is the transition-to-transversion
ratio (Ti/Tv), which should fall in the range of 2.6∼3.3 for
this dataset. All aligners satisfied this requirement. We found
that Accel-Align v2’s result is more consistent than Accel-
Align v1’s compared to the other three aligners according to
the Ti/Tv. As it is illustrated in Table I, the Ti/Tv difference
between Accel-Align v2 and other 3 aligners is 0∼0.1, while
Accel-Align v1’s difference is 0.22∼0.24.

Looking at the overall F-score across SNP and Indel vari-
ants, we see that all aligners are comparable. To classify the
variants found by each aligner, we list true positive (TP)
variants found in both GiaB and by the variant calling pipeline,
false positive (FP) variants determined by pipeline but not vali-
dated by GiaB, false negative (FN) variants which are validated
by GiaB but not determined by pipeline, for SNP and InDels
separately. The F-score is computed as 2*TP/(2*TP+FP+TN).

Comparing Accel-Align v1 and v2, we can see that the new
version with accuracy improvements is able to capture substan-
tially more SNP and Indel variants. Comparing all aligners, we
see that Accel-Align v2 detects the same number of TP InDels
as BWA-MEM and Minimap2. In terms of TP SNP variants,
Accel-Align v2 detects only 13 fewer variants than BWA-
MEM and Minimap2, while several more than Bowtie2. To
better understand the difference between detected variants, we
show a Venn diagram of variants detected by various aligners
in Fig 7 and Fig 8. Majority of SNPs and Indels captured
by other aligners are also captured by Accel-Align. There are
10 SNPs and 1 Indel that are concordantly detected by other
aligners but not Accel-Align v2. Upon further inspection, we
found that the missing variants are mainly due to the use of
large k-mer length and non-overlapping seeding which led to
4.6% of reads being not aligned as shown by the % Mapped
metric. We plan to optimize the seeding stage as a part of
future work.

V. CONCLUSION

In this work, we presented several strategies to improve the
accuracy of randomized embedding in the context of sequence
alignment. We implemented these strategies in Accel-Align
and showed that it is up to 3× faster than Minimap2, 9× times
faster than BWA-MEM, and 12× times faster than Bowie2,
while providing comparable accuracy. An area of future work
that we are investigating is the utility of Accel-Align for long-
read alignment with a higher error rate. Another interesting
avenue of future work is combining embedding with more
accurate, effective strategy based on spaced seeds [18], mini-
mizers [19], or strobemer [20], to be able to map more reads
and thus, be able to identify the missing SNP variants.

Fig. 7: Venn diagram of SNPs detected by various aligners.

Fig. 8: Venn diagram of InDels detected by various aligners.
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