Quantitative Rigidity of Differential Inclusions in Two Dimensions - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2023

Quantitative Rigidity of Differential Inclusions in Two Dimensions

Xavier Lamy
Andrew Lorent
  • Fonction : Auteur

Résumé

Abstract For any compact connected one-dimensional submanifold $K\subset \mathbb R^{2\times 2}$ without boundary that has no rank-one connection and is elliptic, we prove the quantitative rigidity estimate $$\begin{align*} \inf_{M\in K}\int_{B_{1/2}}| Du -M |^2\, \textrm{d}x \leq C \int_{B_1} \operatorname{dist}^2(Du, K)\, \textrm{d}x, \qquad\forall u\in H^1(B_1;\mathbb R^2). \end{align*}$$This is an optimal generalization, for compact connected submanifolds of $\mathbb R^{2\times 2}$ without boundary, of the celebrated quantitative rigidity estimate of Friesecke, James, and Müller for the approximate differential inclusion into $SO(n)$. The proof relies on the special properties of elliptic subsets $K\subset{{\mathbb{R}}}^{2\times 2}$ with respect to conformal–anticonformal decomposition, which provide a quasilinear elliptic partial differential equation satisfied by solutions of the exact differential inclusion $Du\in K$. We also give an example showing that no analogous result can hold true in $\mathbb R^{n\times n}$ for $n\geq 3$.
Fichier principal
Vignette du fichier
lamy-lorent-peng--quantitative_rigidity_diff_inc.pdf (366.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04128806 , version 1 (14-06-2023)

Identifiants

Citer

Xavier Lamy, Andrew Lorent, Guanying Peng. Quantitative Rigidity of Differential Inclusions in Two Dimensions. International Mathematics Research Notices, In press, ⟨10.1093/imrn/rnad108⟩. ⟨hal-04128806⟩
25 Consultations
37 Téléchargements

Altmetric

Partager

More