On optimal regularity estimates for finite-entropy solutions of scalar conservation laws - Archive ouverte HAL
Article Dans Une Revue Comptes Rendus. Mathématique Année : 2023

On optimal regularity estimates for finite-entropy solutions of scalar conservation laws

Résumé

We consider finite-entropy solutions of scalar conservation laws u t + a(u) x = 0, that is, bounded weak solutions whose entropy productions are locally finite Radon measures. Under the assumptions that the flux function a is strictly convex (with possibly degenerate convexity) and a forms a doubling measure, we obtain a characterization of finite-entropy solutions in terms of an optimal regularity estimate involving a cost function first used by Golse and Perthame.
Fichier principal
Vignette du fichier
lamy-lorent-peng--reg_scl_finite_ent.pdf (321.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04128796 , version 1 (14-06-2023)

Identifiants

Citer

Xavier Lamy, Andrew Lorent, Guanying Peng. On optimal regularity estimates for finite-entropy solutions of scalar conservation laws. Comptes Rendus. Mathématique, 2023, 361 (G3), pp.599-608. ⟨10.5802/crmath.427⟩. ⟨hal-04128796⟩
35 Consultations
20 Téléchargements

Altmetric

Partager

More