Selfdual skew cyclic codes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Selfdual skew cyclic codes

Résumé

Given a finite extension $K/F$ of degree $r$ of a finite field $F$, we enumerate all selfdual skew cyclic codes in the Ore quotient ring $K[X;\text{Frob}]/(X^{rk}-1)$ for any positive integer $k$ coprime to the characteristic $p$ (separable case). We also provide an enumeration algorithm when $k$ is a power of $p$ (purely inseparable case), at the cost of some redundancies. Our approach is based on an explicit bijection between skew cyclic codes, on the one hand, and certain families of $F$-linear subspaces of some extensions of $K$. Finally, we report on an implementation in SageMath.
Fichier principal
Vignette du fichier
selfOrthogonalCodes.pdf (436.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04127001 , version 1 (13-06-2023)
hal-04127001 , version 2 (15-10-2024)

Licence

Identifiants

  • HAL Id : hal-04127001 , version 2

Citer

Xavier Caruso, Fabrice Drain. Selfdual skew cyclic codes. 2024. ⟨hal-04127001v2⟩
142 Consultations
130 Téléchargements

Partager

More