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Selfdual skew cyclic codes

Xavier Caruso & Fabrice Drain

October 15, 2024

Abstract

Given a finite extension K/F of degree r of a finite field F, we enumerate all selfdual
skew cyclic codes in the Ore quotient ring Ej, := K[X;Frob]/(X"™® — 1) for any positive
integer k coprime to the characteristic p (separable case). We also provide an enumeration
algorithm when k is a power of p (purely inseparable case), at the cost of some redundancies.
Our approach is based on an explicit bijection between skew cyclic codes, on the one hand,
and certain families of F-linear subspaces of some extensions of K. Finally, we report on an

implementation in SageMath.
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Selfdual skew cyclic codes

1 Introduction

Among linear codes, cyclic codes enjoy a rich algebraic structure as they are defined as ideals of
quotient polynomial rings. This structure endows them with good properties (encoding, decoding, dual-
ity, dimension, distance, length). In the paper of Boucher, Geiselmann and Ulmer from 2006 [BGUO6|,
cyclic codes are generalized by considering left ideals in Ore polynomial rings rather than in polynomial
rings, obtaining thus a much larger class of linear codes called skew cyclic codes. In the present article,
following their work, we study the selfdual property of these codes.

Let K/F be an extension of finite fields of degree r. Let 6 : K — K be the Frobenius z — x? where ¢
denotes the cardinality of F. We consider the Ore polynomial ring K[X; 6], defined as the set of classical
polynomials equipped with the standard addition and the twisted multiplication derived from the law
Xk = 0(k)X where k is any element of K. Skew cyclic codes are by definition left ideals of a quotient of
the form Ej, := K[X;0]/(X"™ — 1). We notice that cyclic codes correspond to the special case of skew
cyclic codes where r = 1.

The ambient space Ey, is equipped with a bilinear form coming from the coordinatewise bilinear form

on the vector space K™, namely

kr—1 kr—1
(Z aiXi7 Z xiXi> — Z a;b;.

i=0 i=0 o<i<rk
It thus makes sense to consider duality of skew cyclic codes. The topic was studied by Boucher among
others. In her paper [Boul6], an enumeration of selfdual skew cyclic codes for r = 2 and for a prime
field F, is given. In a subsequent article [BBB20|, an enumeration of selfdual skew cyclic codes for any
nonnegative integer r, for £k = 1 and for a prime field F, is provided. In their conclusion, the authors
suggest to further count and enumerate all selfdual skew cyclic codes for any values of the order r and
of the degree k and for any finite base field F. In the present paper, we give a complete answer to this
question when the characteristic p of F is odd and k is coprime to it (separable case). We also study
the case when k is a p-th power (purely inseparable case) and obtain partial result in this case, our
enumeration algorithm suffering from some redundancy.

As we will show in Subsection 2.1, r has to be even for selfdual skew cyclic codes to exist. We thus
set 7 = 2s. We first consider the separable case, i.e. we assume that k is coprime with p. For the
purpose of stating our main results, we write F[Y]/(Y* —1) as a product of field extensions of F, namely
F[Y]/(YF=1) = [Ti<i<n Fi where each F; corresponds to an irreducible factor of Y* — 1. We let y
denote the image of Y in F; and we set K; := K®r F;. We also consider the involution 7 acting on the
indices [ induced by the involution Y — % on the irreducible factors of Y* — 1.

Let I be the subset of indexes I € {1,...,n} which are fixed by 7 and let Ieyc1 (resp. Inemm) be the
subset of I consisting of indexes [ such that y; = +1 (resp. y; # *+1). Let also J be the set of the
nontrivial orbits of 7, {I,7(I)} over the remaining indexes [ € {1,...,n}\I. Finally, for each [, we denote
by V(K;/F:) the set of F;-vector subspaces of K;. When [ € Ieyc1 (resp. ! € Inern), we shall further equip
K; with a F;-bilinear Euclidean (resp. Hermitian) form; we let Seuc1 (Ki/Fi) (resp. Shern(Ki/F:)) denote

the set of isotropic subspaces of K; of dimension s := r/2. Our main theorem is as follows.
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Selfdual skew cyclic codes

Theorem 1.1 There exists an explicit bijection between the set of selfdual skew cyclic codes in Ej, and

the cartesian product of sets Wya1 X Whonpa1, Where:

Wpal = H Seucl(Kl/Fl) X H Sherm(Kl/Fl)

l€leuc1 l€Inern

Wnonpal = H V(Kl/Fl)
{l,r(1)}eJ

As a byproduct, we get the following counting of selfdual skew cyclic codes of Ej.
Theorem 1.2 We assume that the caracteristic of F is odd. Then
e if k is even, there are no selfdual skew cyclic codes in Ey,
e if k is odd, there exist selfdual skew cyclic codes in Ey, if and only if s is even or ¢ =1 (mod 4).

Moreover, when selfdual codes exist, their number is given by

T

[T T 1)« T1 11 (a2 1) » (i 1) o )

k
1€ oger i=0 1€ Inorn 1=0 {1, 7(1)}eJ k=0 (ql - 1) cm—1)
where ¢; denotes the cardinal of F;.

We also study the question of finding explicitely selfdual skew cyclic codes in Eg in odd characteristic.
First of all, we describe algorithms, with polynomial complexity in k and r, for generating randomly
such a code, with uniform distribution. We then move to the question of complete enumeration. Since
selfdual skew cyclic codes are quite numerous (their number grows exponentially with respect to ), it
sounds not that interesting to design an algorithm that outputs the complete list of such codes in one
shot. Instead, we describe a routine that outputs a new code each time it is called with the guarantee
that all codes will show up—and show up only once—at the end of the day. The cost of each indivual call
to our algorithm is again polynomial in k and 7.

Our method looks robust in the sense that we are confident that it could be adapted to other sit-
uations, e.g. even characteristic or negacyclic (or more generally, constacyclic) codes instead of cyclic
codes. However, addressing the inseparable case where k is not coprime to p using analogue methods
seems more delicate (although probably doable). In this paper, we outline a different method for enu-
merating all purely inseparable selfdual skew cyclic codes, for which k is a power of the characteristic p,
by multiplying properly twisted separable selfdual skew cyclic codes with each other as described and
illustrated by hand of SageMath computations in Section 4. This enumeration method could easily be
used in combination with the enumeration method of the separable case to solve the general inseparable

enumeration problem. However, it is not optimal as it comes with redundancies.

Organization of the paper. In Section 2, we define selfdual skew cyclic codes. Then, under
the separability hypothesis that k£ is coprime to p, we relate the skew algebra Ej; to a product of
matrix algebras, and we transport the bilinear structure of E; onto matrices. In Section 3, we use this

reinterpretation to count selfdual skew cyclic codes and to generate them efficiently. In Section 3.5, we
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report on an implementation of our algorithms and provide some numerical experiments. The source

code of the SageMath implementation is available at this location:
https://plmlab.math.cnrs.fr/caruso/selfdual-skew-cyclic-codes

In Section 4, we sketch an enumeration algorithm for purely inseparable selfdual skew cyclic codes, in
the case where k is a power of p. Finally we provide computation results for the enumeration of purely

inseparable skew cyclic codes.

Conventions and notations. Throughout this paper, we will use the following notation:

e Endgr (V) denotes, for any ring R and R-module V', the endomorphism ring of R-linear endomor-

phisms of V.

e Matpg rx» denotes, for any ring R, the matrix ring of r x r square matrices with entries in R.

o M" denotes the transpose of the matrix M.

e id denotes the identity morphism.

e GL,(F) denotes the general linear group of the vector space F™ over the finite field F.

e [° denotes the subfield of L fixed by the automorphism o.

o V* denotes the orthogonal of the vector subspace V.
If F be a finite field, equipped with an involutive automorphism o, we recall that a o-sesquilinear form
B of a F-vector space V is an additive map B : V x V — F such that

B(Au, pv) = X - o(p) - B(u,v) Vu,veV, VA\ueF

In this paper, we will consider four different types of sesquilinear forms:

e (Euclidean case) o = id and B is symmetric, i.e. B(u,v) = B(v,u) for all u,v e V,

o (skew-Euclidean case) o = id and B is antisymmetric, i.e. B(u,v) = —B(v,u) for all u,v e V,

e (Hermitian case) o # id and B is symmetric,

o (skew-Hermitian case) o # id and B is antisymmetric.
We recall that, when B is nondegenerate, the ring Endr (V) of F-linear endomorphisms of V' is equipped
with an involutive anti-automorphism f +— f* characterized by

Yu,v €V, B(u,f*(v)) = B(f(u),v)

It is called the adjunction relative to B. We recall that (f + g)* = f* + g* and (fog)* = g“ o f* for
f,g € Endp(V). Moreover, the adjoint of the scalar multiplication by an element a € F is the multi-
plication by o(a). The adjoint construction allows finally to endow Endp (V) itself with a sesquilinear

pairing, defined by (f, g) = Trace(f o g*).

Page 4


https://plmlab.math.cnrs.fr/caruso/selfdual-skew-cyclic-codes

Selfdual skew cyclic codes

2 From skew cyclic codes to finite geometry

2.1 Definition of skew cyclic codes

Let F be a finite field of cardinality ¢ and characteristic p. Let K be a finite extension of F of degree r.
Let 6 :  — x7 be the Frobenius automorphism of K. We build the quotient of the free K-algebra K(X)
by the noncommutative relation: Vx € K, Xx = 0(k)X. We then localize it at the powers of X. This
results in the Ore Laurent polynomial ring K[X*!;0]. As shown in [Jac96, Theorem 1.1.22], its center
is F[X] n K[X*"] = F[X®"]. For any f € F[X*"], we can thus form the quotient K[X*';0]/(f(X)),
which keeps a ring structure. We will call skew quotient algebra the algebra K[X*';60]/(f(X)) over its

center.

Remark 2.1 As a quotient ring of the left and right Euclidean domain of skew Laurent polynomials,

K[X 11, 0], any skew quotient algebra is a left and right principal ideal ring.

We now move to the definition of selfdual skew cyclic codes. For any nonnegative integer k, X™* —1
is in the center of K[X*';0]. We can thus form the quotient ring Ej := K[X**;0]/(X"™ —1). Choosing
for any element of Ej, the unique lift in K[X; 0] ¢ K[X*!;8] of degree strictly less than kr defines an
isomorphism of K-vector spaces A : E;, — K.

Using the classical Hamming distance d on the K-vector space K™ we define the Hamming distance

D between two elements f and g of Ex by D(f, g) = d(A(f), A(g))-

Definition 2.2 Given a € F*, skew a-constacyclic codes are left ideals of K[X**; 0]/(X"* + a) endowed
with the metric D. Skew cyclic codes (resp. skew negacyclic codes) are skew a-constacyclic codes for

a =1 (resp. a = —1).

We are interested in the skew cyclic code duality for the coordinatewise bilinear form, defined on
I(Tk by

((wi)o<i<ris (Yi)o<i<ri) — Z TiYs

o<i<rk

We note that this bilinear form is nondegenerate.

Definition 2.3 A skew cyclic code is said self-orthogonal (resp. selfdual) if A(I)  A(I)* (resp. if
A(I) = X(I)™).

As we have dim(\(I)) + dim(\(I)*) = r, a necessary condition for selfdual skew cyclic codes to exist

is that r is even.

2.2 The evaluation isomorphism ¢&

We now place ourselves in the separable case, where k is coprime to p. It is then known that Ej is a
semisimple algebra (see [Wis91, Proposition 20.7]). As Ej is finite-dimensional over F, classical results
imply that it is a cartesian product of matrix algebras over finite field extensions of F. Hereunder, we

describe an explicit isomorphism realizing this decomposition.
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We note Y := X" and decompose Y* — 1 as a product of irreducible polynomials P(Y) over F. We
set F; := F[Y]/P(Y), K; := K[Y]/P,(Y) and let y; denote the image of Y in K;. We extend 0 to an

automorphism of K; by letting it act trivially on y;. We have a first decomposition
E. ~ K[Y, X;6]/(Y* - 1, X" V)

K[Y, X; 0] . 1 N
I ro) )/ *Y>:1<Fl£nKz[X* L01/(X7 — ). 2.1)

1<i<n

We set ]:],(Cl) = K;[X*';6]/(X" — ) and now study each ]:lg) separately. We observe that K; is a finite
étale extension of the finite field Fy, i.e. a finite product of finite extensions of F;. As it has finite
cardinality, the norm map Normg,/r, is surjective; hence, there exists an element z; in K; satisfying

Normg, /F, (z1) = yi. The change of variables X — x; X defines an isomorphism
Eval,, x : B = EY = K [XT;6]/(X" —1).
On the other hand, we have an evaluation morphism X +— 6:

Evaly: EY — Endr, (K;)
P(X) —  P(0)

Composing both maps, we obtain a third morphism &; : ]:Jg) — Endr, (K;). Applying it to each term

Eg) of the decomposition (2.1), we finally end up with a map relating E; to a product of matrix algebras.

Proposition 2.4 The map
(51)16{1,“,7@ (B — H Endr, (Ki)

1<i<n

is an isomorphism of F-algebra.

Proof. (See also [Jac96, Theorem 1.3.12].) By Artin’s lemma, the family (%)o<i<r is linearly indepen-
dent. This proves the injectivity of &. As the dimension (over F;) of its domain and the codomain are
both 72, surjectivity follows. The final evaluation map resulting from the composition of the chinese

remainder isomorphism with the product of isomorphisms Eval;,¢ is thus an isomorphism. O

Remark 2.5 To compute the evaluation isomorphism &;, a fast computation of preimages by the norm
is needed. One possible method consists in finding an irreducible factor of the skew polynomial X" — g,

in K;[X;0]. An algorithm for this task is described in [CL17].

Remark 2.6 By the Skolem-Noether theorem, the isomorphism &; is uniquely defined up to conjugacy

by an element of norm 1, i.e. up to another choice of z; as preimage of y; by the norm map.
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2.3 Adjunctions on E; and related spaces

In this subsection, we construct an alternative F-bilinear pairing on E; and show that it induces the
same orthogonals than the coordinatewise bilinear form considered previously. Our variant is interesting
because it will in turn induce a pairing on the simpler spaces E,(Cl).

We begin by defining an adjunction on E;. We start from the following F-linear automorphism on
K[Xx*!; 6]

K[X*;0] 5 K[X*'4)
F=SLAXT - froN X

It is an involution. One moreover checks that it is an anti-morphism, i.e. it satisfies (fg)* = g*f*
for all f,g € K[X*';0]. Indeed, by linearity, it is enough to check the desired property when f and g
are monomials, which is a direct computation. We observe that the adjoint (X" — 1)* is a multiple of
X" — 1 itself. The adjunction thus preserves the two-sided ideal generated by X"* — 1; therefore, it
passes to the quotient to define an anti-automorphism of Ej. In a slight abuse of notation, we continue
to write f* when f € Ei. Since the adjunction is an anti-automorphism, we underline that it maps left
ideals of Ej to right ideals.

We now define a nondegenerate bilinear form corresponding to this adjunction. We recall to this end
that the evaluation of a skew polynomial f = Zfio fiX? of K[X;0] at 1 is defined by f(1) := Zf\;o fi-

This definition passes again to the quotient Ey. For f, g € E, we then set

(f,g) = Tracex/r((fg*)(1)) € F.

It is readily seen that f > f* satisfies the adjunction formula, in the sense that

(f, ghy = Tracex/r ((f(gh)*)(1)) = Tracex/r ((f2*)g™) (1)) = (R, g

for any f,g,h € E,. Denoting by I' the orthogonal of I ¢ K, we have the following compatibility

property.
Proposition 2.7 For any left ideal I of Ej,, we have A\(I*) = A(I)*.

Proof. Let I be a left ideal of Ex. An element g of Ej; is orthogonal to I if and only if
Tracex/r((fg™*)(1)) = 0 for all f € I. This holds if and only if Tracek r((xfg*)(1)) = 0 for all Kk € K
and all f € I. By nondegeneracy of Tracek,r, the condition is further equivalent to (fg*)(1) = 0 for all
f € I. This boils down finally to the orthogonality condition on K™, namely Do<icie M)iA(g): = 0
for all fel. O

In what follows, we prefer working with the pairing {(—, —) because it corresponds to sesquilinear

trace forms on the F;-algebras E,(Cl). ‘We now describe them.

Definition 2.8 We say that a polynomial is palindromic if the set of its roots in an algebraic closure
of its base field does not contain zero and is stable under the inversion map =z — % Equivalently a

polynomial };7 piz is palindromic if it is collinear to its reciprocal polynomial > Prix™ L
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We recall that we have the decomposition F[Y]/(Y* —1)~ [[ F[Y]/P(Y)~ [] F.

1<i<n 1<i<n

Definition 2.9 We define a map 7: {1,...,n} — {1,...,n} by the relation Pf(l)(yil) =0.

As the polynomial Y* — 1 is palindromic and separable, the index 7(1) exists, and 7 is obviously
involutive. Furthermore, we let o be the endomorphism of F-algebras of F[Y]/(Y* — 1) defined by
Y — % It is also involutive. Moreover it induces an isomorphism o; : F; — F.) and we have
oi(y) = Yr@)- The tensor product id ® o; defines an involutive isomorphism K; — K- () extending o;.
For simplicity, we will keep the notation o¢; for id ® o;.

The next proposition shows that the adjunction behaves nicely with respect to the decomposition

E. =T, ]:lg) we have established in Equation (2.1).

Proposition 2.10 The adjunction f ~— f* induces “partial” adjunctions E,(Cl) — ]:3,(:(”), which are
explicitly given by the formula
deg P —1 ) deg P —1 )
doRXTe Y X Toul(fi), VfieK. (2.2)
i=0 i=0

Moreover, the “global” adjunction can be recovered by taking the product of the partial ones.

Proof. Let Q; be the idempotent element of F[Y]/(Y* — 1) c E, corresponding to the factor Fy, i.e.
the element defined by the congruences @Q; = 1 (mod P;) and Q; = 0 (mod Py) whenever I’ # [. As
automorphisms respect congruences, we have Qf = o(Q;) = Q). Besides ]:lg) = QiEr = ExQ;. We
thus have ]:3,(6”* = (QEy)* = ExQ] = ExQ,y = ]:3,(:(”). The explicit formula (2.2) is derived after

noticing that fi* = o,(f;) for f; € K;. Finally, the last statement of the proposition is clear. O

We now aim at describing how the adjunction is transformed by the evaluation isomorphisms &;.
For this, the first step is to understand its effect on E;cl) (without the tilde) which, we recall, is defined
as Eg) = K;[X;0]/(X" — 1). The adjunction f — f* again passes to the quotient and determines a
well-defined adjunction E,(Cl) — El,(;(l))7 that we continue to denote f +— f*. Unfortunately, the latter is
not exactly what we need; we are now going to fix this issue by defining a twisting version of it. For

this, we first define z; := x; - -y (z- (1)) € K.

Lemma 2.11 There exists a family of nonzero elements ¢; € K; such that 6(¢;) = z:(; and 01(¢1) = ¢
for all [.

Proof. Since 07 0 0,y = id, we have oy(x; - o-)(z-1))) = -q)oi(z1), which ensures that z; is in-
variant under oy. Furthermore, we observe that Normk,/r,(21) = yi - 0,0)(y-y) = 1. Hence, the
Hilbert 90 Theorem guarantees the existence of an element ¢; of K such that (¢;) = 2,(; and hence
27X = Cl_lXQ. Moreover, as automorphisms of finite fields commute, o;(¢;) satisfies 6(0;((;)) = z101(().
Set ¢/ := G + 071y (Cr1)), s0 that we have o;((]) = Crpy- If ¢ # 0, it satisfies 2 X = ¢t X ¢ as well. On

the contrary, if ¢/ = 0, we have o,()((-@)) = —(. In this case, oy is nontrivial and so y-q) # +1. As

¢rn)
Yr(l)

z% satisfies also 0(%) = 2%, the element (] := 75—’1 + o0

— 1 i i
& ) = Q(y—L — yi) is nonzero and satisfies

21X = (/"' X¢/. Since we moreover have oy(()) = ¢/, the lemma is proved. O
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Remark 2.12 The element (; can be efficiently computed using the following formula from the proof
of the Hilbert 90 Theorem: it can be chosen as the multiplicative inverse of any nonzero element in the

image of the endomorphism >}, [ o<, 09 (2)6".
Definition 2.13 For f € E,(cl)7 we set f* = (leCl_l)* = g:(})f*gm) € E,(J(l)).
Lemma 2.14 For all f € E{" we have [z X) = f(miX)".

Proof. By additivity, it is enough to check the formula when f is the monomial kX*. We thus have
f* = X""oy(k) and so

We conclude by noticing that [[/_} 0% (2 1)) = [[iZg 0 (z-y) o (Hi;é t9t(xl)). |

Following the isomorphism E;cl) ~ Endr, (K;) and its counterpart for 7(), we find that the adjunction
f — f* induces another anti-isomorphism Endg, (K;) — Endr, ;, (K@) We are now going to prove
that the latter is the adjunction map associated to some explicit bilinear map. Precisely, we introduce

the twisted bilinear trace form

K; x KT(l) — Fy

(2.3)
(5,p) = (K, p)r, := Tracex, ¥, (G - £ - 0-1)(p))
In the palindromic case, we have K. ;) = K; and we observe that the above pairing is Euclidean when
y1 = 1 and Hermitian otherwise. In all cases, the bilinear form (—, —)r, is nondegenerate and hence
identifies K; with the dual of K, ;)
Proposition 2.15 The involutive isomorphism e is the adjunction relative to (—, —)g,, i-e.
(f(ﬁ)v p)Fl = (Kv f. (P))F“ Vfe EndFl (Kl)7 Vke Ky, Vpe KT(l)-
Proof. We write f =31 ;.4 f:0° with f; € K; and compute
r—1 r—1 )
(f(8), p)r, = ), 6" (Cl oy (p) Y] f¢9l(ﬂ)>
k=0 i=0
r—1r— —i
i —i 0" —i
- Z o (cz 07 0 o o) )
1=0 k=0 Cl
r—1
= Z (Z G-0 Qo (p ))’Czl'ﬁ>
= Tracex, /¥, (G- o-) (f*(p)) - ) = (5, [*(p))F,
which is exactly what we want. |
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Finally, composing the morphisms X — z;X and X — 6, we obtain the following commutative

diagram:
= Xz X s
El(cl) L El(cl) X0 Endr, (K1)
lfo* lf»—»f' J/adjunction for (_’_)Fl (24)
~ Xz 1y X - —
B S, B0 e B )

where we note that the composite of the horizontal maps is & on the top, and &, (;) on the bottom.

2.4 Vector space duality

In the previous subsections, we reduced the problem of finding selfdual skew cyclic codes in Ej to
that of finding selfdual skew cyclic codes in the product of the Endr, (K;). We will now further reduce
this problem to that of finding maximal isotropic F;-vector spaces of K; in the palindromic case and of
K; x K;(;) in the nonpalindromic case.

To this end, we apply the classical duality between F;-vector subspaces of K; and left ideals of
Endr, (K;) [Ber|. Let us recall it briefly. Given a field F' and a finite dimensional F-vector space W,
the vector space duality associates to every F-vector subspace V of W, the left ideal Iv of Endp (W)
formed by the endomorphisms vanishing on V. Dually, it associates to every left ideal I of Endp (W),

the intersection of the kernels of the morphisms in I. With formulas, it can be expressed as

I Vi = () ker(f),

ferl

Vi Iy = { f € Endp(W) |V < ker(f) }.

This duality defined an order-reversing one-to-one correspondence between the set of left ideals
of Endrp(W) and the set of F-vector subspaces of W. Moreover, for all V. < W, we have
dimp Iv = (dimp W — dimp V) - dimp W.

We now assume in addition that we are given an involution o : F' — F' and that W is endowed with
a nondegenerate o-sesquilinear form. We recall that this datum equips Endp(W) with a sesquilinear

form as well. In particular, taking orthogonals over W and Endr (W) makes sense.
Proposition 2.16 For all subspace V of W, we have I = Iy,1.

Proof. Given f € Iv and g € I;,1, we have f o g* = 0 since f vanishes on V and im g* = (kerg)t c V.
Therefore f and g are orthogonal in Endp(W). It follows that I < I,.. The equality follows by

comparing dimensions. O
We are now ready to apply what precedes to codes and prove the main theorem of this section.

Theorem 2.17 There exists an explicit bijection between the set of selfdual skew cyclic codes of Ey

and the cartesian product of sets Wya1 X Waonpa1, Where:

o Whia is the cartesian product, over the set I of indexes invariant under 7, of the sets of isotropic

F-vector subspaces of K; of dimension r/2,
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® Whionpa1 is the cartesian product, over the set J of all remaining nontrivial orbits of 7, of the sets

of F;-vector subspaces of K;.

Proof. By what we have done in previous subsections, selfdual codes in Ej are in bijection with left

ideals of the cartesian product

ﬁ EndFl (Kl)

=1

that are equal to their orthogonal. Besides, the orthogonal of an ideal can be taken component by
component, with the care that the orthogonal of the I-th component lies in the 7(I)-th component.
Therefore, when 7(1) = [, the I-th component must be selfdual itself whereas, when 7(I) # [, the
component at position [ can be anything but it determines the component at position 7(I). Using
now the vector space duality, we can further replace ideals of Endr,(K;) by F;-subspaces of K;. This
operation preserves the orthogonality condition as the vector space duality commutes with orthogonals.
We finally conclude by noticing that a subspace of K; which is equal to its orthogonal is nothing else

than an isotropic subspace of half dimension, that is of dimension r/2. O

3 Counting and generating selfdual skew cyclic codes

We keep the notation introduced before. In particular, we recall that K/F is an extension of finite
fields of degree r and that Ey = K[X;60]/(X*" —1) (where 0 :  — 27 with ¢ = Card F). Besides, we set
Y = X" and assume that k is coprime with 7. Under this hypothesis, the polynomial Y* — 1 is separable
and we write down its decomposition as a product of irreductible factors Y* —1 = Py (Y)--- P,(Y). We
recall also that we have introduced an involution 7 : {1,...,n} — {1,...,n} defined by the condition
that the roots of P, and the inverses of the roots of P,(;). In Subsection 2.2, we proved that we have an

isomorphism of the form

B~ [RI 01/ — ) > [ ] Bude, ()

=1 =1

where F; = F[Y]/P(Y), K; = KQr F; = K[Y]/P,(Y) and y; is the image of Y in K;. In Subsection 2.3,
we showed that this decomposition preserves orthogonality in some precise sense. This allowed us to
conclude (see Theorem 2.17) that enumerating selfdual skew cyclic codes sitting in E; boils down to
enumerating maximal isotropic Fi-vector subspaces of K; when 7(I) = [ (palindromic case), and to
enumerating F;-vector subspaces of K; otherwise.

In this section, we rely on this theoretical result, first, to count skew cyclic codes and, second, to
construct them explicitely. More precisely, we shall address two different problems: that of random
generation and that of complete enumeration.

Throughout this section, we assume that the caracteristic of F is odd.
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3.1 Existence criterion

By Theorem 2.17, there exist selfdual codes in E; if and only if for each [ such that 7(I) = [,
the space K; admits a totally isotropic subspace of dimension s := r/2. We then aim at providing
simpler conditions for this property to hold. For this, we shall use Witt’s decomposition theorem as a
fundamental tool. Let us recall it briefly. Let F' be a field of odd characteristic, and let o : F' — F' be
a ring homomorphism which is an involution (possibly the identity). Let also V' be a finite dimension
vector space over F', endowed with a o-sesquilinear form B : V x V — F. We recall that a hyperbolic
pair is a pair of vectors (u,v) of V satisfying B(u,u) = 0, B(v,v) = 0 and B(u,v) = 1, and that the

2-dimensional subspace of V' spanned by a hyperbolic pair (u,v) is called a hyperbolic plane.

Theorem 3.1 Keeping the previous notation, there exists an invariant d (called the Witt index of V)

and hyperbolic planes Hi,..., Hq such that one has the orthogonal decomposition

V:(@ Hi>®W

1<i<d

where W is a subspace that does not contain any nonzero isotropic vector.

Moreover, the dimension of any maximal isotropic space is equal to d.
Proof. See for instance [Art11l, Theorem 3.11]. |

When F is a finite field, more can be said. For simplicity, we assume that dimV = 2s. If o # id,
the Witt index of V is always s. On the contrary, when o = id, it can be either s or s—1 but we can
decide between those two values by looking at the discriminant dy of V' (defined as the determinant of
the matrix of B is some basis); precisely, the Witt index is s if and only if (—1)°dv is a square in F'*.
(See [Sch85, Theorem 3.3| for more details.)

In our case, Theorem 2.17 tells us that we are looking for isotropic vectors of dimension s in K;; we

recall from Equation (2.3) that the latter is endowed with the sesquilinear form

(Kv p)Fz = TraceKl/Fl (Cl cK UT(l)<p))

where oy : K;@) — K; is the map induced by o,y (Y) = % and (; is an element of K; defined in

Lemma 2.11. We then need to compute the discriminant J¢, of this sesquilinear form.
Lemma 3.2 We assume that o; = id and we let dk,/r, be the discriminant of the extension K;/F;
(which is, by definition, the discriminant of the bilinear form (k, p) — Tracek, /r, (kp)). Then
1. the discriminant d¢, is equal to Normg, /v, ((1) - 0k, /F, »
2. the discriminant 5Kl/Fl is a square in F; if and only if the degree of the extension [F; : F] is even,
3. if yy = 1 (resp. y1 = —1), Normy, /r, ((i) is a square (resp. is not a square) in F;.

Proof. 1. We fix a basis of K; over F; and write Mat(¢;) for the matrix representing the multiplication

by ¢ in this basis. Then &¢, = det (Mat(¢)™) - 0k,,r, = Normg, /¥, ((1) - 0k, /¥, -
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2. From K; = K®r F;, we deduce that Jk, r, = dx/r € F. Moreover, we know that i r is a square in
F if and only if the Galois group of K/F is a subgroup of the alternating group (see [Mil20, Corollary
4.2]), which never occurs in our situation given that Gal(K/F) is a cyclic group of even cardinality. We
conclude that 0k is a square in Fy if and only if the extension F;/F has even degree.

3. We assume that y; = £1 and compute

a1 o<i<2s 4’ o
Norsz/Fz(Cl) =G

_ ( ;1_1)20@525 @ _ (xlo-l(xl)) ZUSi;Zs a’

q—1

Asy, = +1, the automorphism o is the identity and so Normg, /¢, () 2 = y1. We conclude by applying

Euler’s criterion. O

Corollary 3.3 We assume that the caracteristic of F is odd.
1. If k is even, there are no selfdual skew cyclic codes in Ey.

2. If k is odd, there exist selfdual skew cyclic codes in Ey, if and only if (—1)° is a square in F, if and

only if s is even or ¢ =1 (mod 4).

Proof. We first notice that, whenever y; # +1, there is no obstruction to the existence of an isotropic
subspace of half dimension. On the contrary, when y; = 1 (resp. y; = —1), it follows from Lemma 3.2
that an isotropic subspace of K of dimension s exists if and only if (—1)° is a square (resp. is not a
square) in F.

When k is even, the decomposition of Ej, exhibits both factors K[X;0]/(X"+1) and K[X;60]/(X"—1).
Since (—1)° cannot be simultaneously a square and a nonsquare, we conclude that selfdual skew cyclic
codes cannot exist in this case. On the contrary, when k is odd, the factor K[X;0]/(X" + 1) does not
show up and we are left to the condition corresponding to y; = 1.

Finally, the fact that if (—1)° is a square in F if and only if s is even or ¢ = 1 (mod 4) is a direct

application of Euler’s criterion. O

3.2 Counting selfdual skew cyclic codes

We now aim at counting the number of selfdual codes sitting in Ej, when they exist. In what follows,
we then assume that the existence criterion of Corollary 3.3 is fulfilled. It follows from Theorem 2.17

that out task reduces to finding the cardinality of Wya1 and Whonpa: -

3.2.1 The nonpalindromic case

We start by the nonpalindromic case, which is by far the easiest. For this counting, we will
use g-analogues of integers. We recall briefly that the g¢-analogue of n € N is, by definition,
[n]lq := 1+q+q*+ - +q*'. The g-factorial of n is defined by [n],! = [1]4[2]¢---[n]s and we

set

nyo_ [n]4! (17q")(17q"*1)_”(17qn7k+1)
q. [k]q! [n — K]q! I-q)(1—¢)...(1—q¢"
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where n and k are nonnegative integers with & < n. It is a classical fact that the g-binomial coefficients
count the number of F4-vector subspaces of dimension & in the ambient F,-vector space .

Therefore, with the notation of Theorem 2.17, we have

Card(Waempat) = [ | D] H . (3.1)
{l,7(1)}eJ \ k=0 k q

l
3.2.2 The palindromic case

If V is a finite dimensional vector space equipped with a sesquilinear form, we denote by Iso(V)
the number of isotropic subspaces of V' of half dimension. It turns out that the behaviour of Iso(V)
have been studied for a long time (see for instance [Segh9, Ple65, BBB20]) and that explicit formulas

are known. Those are called Segre’s formulas and are recalled in the following theorem.

Theorem 3.4 Let F' be a finite field of odd caracteristic and cardinality qr and let o : I — F be an
involutive ring automorphism. Let V' be a F-vector space of dimension 2s equipped with a nondegenerate

o-sesquilinear form, whose Witt index is s. Then:

s—1 .
1. if o = id (Euclidean case), then Iso(V) = [] (¢ + 1),

2. if o # id (Hermitian case), then Iso(V) = 3 (q?’l/2 + 1).
=0

Proof. We recall briefly the idea of the proof as it will be useful afterwards. Let iso(WW) be the number of
isotropic vectors in a Euclidean or Hermitian vector space W over F. We claim that, if W has dimension

2d and Witt index d, then

1. if o = id (Buclidean case), then iso(W) = (¢% — 1)(¢% * + 1),

2. if o # id (Hermitian case), then iso(W) = (g% — 1)(q}1;1/2 +1)

Indeed, let us fix an isotropic basis ((u:)o<i<s, (vi)o<i<s) corresponding to the Witt’s decomposition of
W (see Theorem 3.1) and let ((ai)o<i<s, (bi)o<i<s) be the coordinates in this basis of a vector. In the
Euclidean case, the fact that this vector is isotropic reduces to the equation Zo<i<s aib; = 0. Now, fixing
a nonzero vector (a;)o<i<s of F7, this occurs if and only if (b;)o<i<s lies in some hyperplane. We thus
have (g¢§ — 1)g5 ! solutions corresponding to nonzero (a;)o<i<s, to which one should add (¢§ — 1) more
solutions when all a; vanish. Finally, we get iso(W) = (¢& — 1)(¢% * + 1) as claimed.

The Hermitian case is similar, expect that the equation to solve is now
Do<ics 01(ai)bi + 2 a;01(b;) = 0, which reduces to 3, _, aioi(b;) = a where «a satisfies 0;(a) = —a.
We conclude repeating the argument of the Euclidean case and using that there are exacly qu:/2 values
for a.

We are now ready to prove Segre’s formula. We start by taking Wy = V' and by picking an isotropic
vector wo in W. This corresponds to isos possibilities. Once this is achieved, we set W1 := (Fwo)*/Fwo.
This is a space of dimension 2(s—1), whose Witt index is s—1. Therefore, we can apply again our claim
and find that there are exactly isos—1 isotropic vectors in Wi. We choose one of them, that we denote by

w1. Now we repeat the argument until we reach ws—1. This corresponds to iso(Wy)-iso(W7) - - - iso(Ws—1)
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q;(kl)/ ? choices of families of vecteurs of

choices. However, each of them corresponds gr - ¢% - - - q}_l =
V since w; has ¢ preimages in V. We conclude that the number of bases of a maximal isotropic subspace
of V is equal to ¢5* V"% . iso(Wy) - iso(Wh) - - - iso(Ws_1). We finally obtain Iso(V) by dividing by the
cardinality of GL4(F). O

Remark 3.5 In the Euclidean case, one can alternatively prove Segre’s formula by remarking that the
orthogonal group of V' acts transitively on the set of maximal isotropic subspaces and that the stabilizer
of a given maximal isotropic subspace U can be presented as a semi-direct product of GL(U) and the
group of antisymmetric linear applications from U to its dual Homp (U, F'). From this description we

find that the number of maximal isotropic subspaces is

Card (O (F))
g3 "M% . Card (GL4(F))

a formula from which one can eventually derive Segre’s theorem. A similar approach also works in the

Hermitian case.

Keeping the notation of Theorem 2.17, it follows from Theorem 3.4 that

(ql"“/2 " 1) 4 (3.2)

Card(Wpa1) = H ﬁ (ql' + 1) x H 1

—1
lel i=0 lel  i=0
y==%1 y#tl

We notice moreover that there is always exactly one index [ for which y; = 1, and there is at most one
index [ such that y; = —1 (such an index actually exists if and only if k is even). In both cases, the
corresponding field F; is F, and so ¢; = q.

Now combining Equations (3.1) and (3.2), we get the number of selfdual skew cyclic codes sitting in
Ej, which proves Theorem 1.2.

Example 3.6 For K = [ 2. and ¢ : © +— x9, the number of selfdual skew cyclic codes is equivalent

s(s—1

to ¢~ 2z as s grows to infinity, whereas the number of skew cyclic codes (number of s dimensional
[F4-vector subspaces of [ 2.) is equivalent to q52 as s grows to infinity.

For example, for K = Fs and # : = — z°® the number of selfdual skew cyclic codes in
E: = K[X;0]/(X® — 1) is 80 among 33880 skew cyclic codes, whereas for K = F41s and 0 : 2 — 2,
the number of selfdual skew cyclic codes in E1 = K[X;0]/(X' — 1) is 469740602936729600 among
791614563787525746761491781638123230424 skew cyclic codes.

Remark 3.7 We recover also the number of selfdual cyclic codes from the case » = 1 in Segre’s formula.
We observe that, as we are in the separable case, (X — 1) is always a palindromic factor of (Xk —1) of
multiplicity 1. Thus, there exist no selfdual cyclic codes at all in the separable case in F,[X]/(X* — 1).
With regard to this fact, skew cyclic codes enjoy much more dual symmetries than cyclic codes. Never-
theless, the ratio of the number of skew cyclic codes over selfdual skew cyclic codes increases as fast as
(’)(q#) as s grows larger. The best ratio is obtained for s = 1, and ¢ = 3, in odd characteristic. In

this case, half of the skew cyclic codes are selfdual skew cyclic codes.
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3.3 Random generation of selfdual skew cyclic codes

Since the number of selfdual skew cyclic codes grows exponentially fast with respect to the dimen-
sion r, an algorithm outputting in one shot the complete list of these codes would be necessarily very
unefficient (the better we can expect is exponential complexity) and hence, probably not quite useful.
Instead, in what follows, we address a different question, which is that of random generation: we aim at
finding a fast algorithm that outputs a unique code in this huge list with the guarantee that the returned
code is uniformly distributed among all of them. Such an algorithm could be very useful to generate

typical selfdual skew cyclic codes and to check their properties.

3.3.1 From skew cyclic codes to finite geometry: explicit methods

Before designing our algorithms, we need to explain how we represent the objects on the computer.
We recall that a skew cyclic code is, by definition, a left ideal of E; = K[X;0]/(X*" — 1). Hence
it necessarily has the form E.f for some f € K[X;60]. We can further normalize this generator by
requiring that it is monic and has minimal degree; normalizing a generator amounts to replacing f by
rged(f, X*"—1) (where rged denotes the right ged). The same discussion applies similarly to all quotients
of a Ore polynomial ring by a two-sided ideal and so, in particular, to K[X;6]/P,(Y) and the algebras
B = Ki[X:0)/(X" — ).

We recall further that we have the following sequence of isomorphisms:
E; ~ [ [K[X;0)/P(Y) ~ [ [E’ ~ [ | Bndr, (K))
1=1 =1 =1

and that the left ideals of Endr, (K;) are in one-to-one correspondence with the F;-linear subspaces of
K; (see Subsection 2.4). We aim at making explicit all these identifications.

Going back and forth between Ex and J[}"; E, is not difficult. Indeed, if a code sitting in Ej is
generated by f, its image in Ex will be generated by f as well. Conversely, if one starts with a family of

codes (Eg)fl) its preimage in Ej, is the code generated by a Ore polynomial f satisfying the set

1<i<n’
of congruences

f=fi (mod P(Y)) (1<l<n). (3.3)

We need to be careful however that f; has a priori coefficients in K;; in order to view it as a Ore polyno-
mial in K[X; 0], we have to replace each occurrence of y; by Y = X". The system of congruences (3.3)
can then be solved using the Chinese Remainder Theorem; we underline that noncommutativity is not
an issue here because all the moduli P;(Y") lie in the center. We also stress that the solution f to (3.3)
is in general not normalized, even if the f; are; if one wants to normalize it, one needs to compute an
additional rgcd.

We now explain how to navigate between ]:lg) and Endr, (K;). We first recall that the isomorphism
between those two rings is given by X — z;6. Hence the ideal of Endr,(K;) that corresponds to the
ideal ]:],(cl)f of ]:],(Cl) is the ideal consisting on linear maps vanishing on the kernel of f(z;0). The associated

Fi-linear of K, is then just ker f(z;0). The correspondence in the other direction is also given by an
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explicit formula: if V' is a Fj-subvector space of K; and (v1,...,vq) is a basis of V, a generator of the

ideal of ]:lg) corresponding to V' is

Mm(XfﬂﬂﬁL”quﬁﬂﬁg

U1 Vd

where llcm denotes the left lem.
To conclude, we record the following proposition which elucidates how duality acts on our represen-
tations.
Proposition 3.8 We set E = E' = E, and P = Y* — 1 (resp. E = E,(Cl)7 E' = Egj(m and P = P,).
(a) Given f,ge K[X;0], the ideal Ef and E’g are orthogonal if and only if fg* = 0 in E.
(b) Given f € K[X, 6] dividing P, the orthogonal of Ef is the ideal E’g* where g is defined by fg = P.
Proof. (a) By nondegeneracy of sesquilinear form (—, —), the condition fg* = 0 is equivalent to gf* =0

and then to (F,gf*) = 0. By adjunction relation, the condition becomes (Ef,g> = 0. Since the

adjunction is an isomorphism, the condition is further equivalent to ((E')*Ef,g) = 0 and finally to

(Ef E'g)=0.
(b) By what precedes, the ideals Ef and E’g* are orthogonal. We conclude by noticing that
dim Ef + dim E'g* = (deg P — deg f) + (deg P — deg g) = deg P. |

Remark 3.9 As a corollary, Proposition 3.8 provides a simple criterion to check that the code Eg f is

selfdual: assuming that f is normalized, it is the case if and only if ff* = 0 in E; and deg f = s.

Algorithm 1: Explicit bijection with Wyonpa1 X Wpa1

Input: a family ((V})lel, (V}){Z,T(l)}ej) € Whonpa1 X Wpa1
Output: the normalized generator of the corresponding selfdual skew cyclic code
1: forlel:
2:| pick a basis (v1,...,vs) of V
3| fi < llcm(X —x0(v;)/vi, 1 <0 < s)
4:|do the subtitution y; — X" in f; /* now f; € K[X;0] */
5:| fi < rged(fi, (YY)
6: for {I,7(l)} e J:
7:| pick a basis (vy,...,v4) of V;
8| fi «— llcm(X —x0(v;)/vi, 1 <0 < d)
9:|do the subtitution y; — X" in f; /* now f; e K[X;0] */
10:| fi < rged(fi, P(Y))
11: | define f, ) by the equality flf;"(l) =P(Y)
12:| fray < rged(fray, Pray(Y))
13: compute f such that f = f; (mod P(Y)) for 1 <l <n
14: return rged(f, X% — 1)

The discussion of this subsection is summarized by Algorithm 1 which computes the normalized
generator of the code sitting in E that corresponds to some element of Waenpa1 X Whar via the bijection
of Theorem 2.17. The next subsections are devoted to explain how to produce a random element in

(each component of) Whonpar X Wpar.
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3.3.2 The nonpalindromic case

We first consider the indices | such that 7(I) # [. At those places, we simply need to generate
a uniformly distributed random F;-subspace of K;. We proceed as follows. We first construct the

dimension: we sample an integer d € {0, ..., r} with distribution given by:
Prob[d = i] proportionnal to [T} .
a
Once this is achieved, we sample d random elements in K; with uniform distribution. If they are linearly

independant over F;, we output the vector space they generate. Otherwise, we throw them and start

again with d new elements. The probability of failure is

1 1 1 1 1 1
1-—)(1-—) [1-—= |21 =+ +—— | =1 ,
< ql’"> ( qfl) ( ql’"_d“> (ql’" q{‘d“) -1

proving that, in average, we will need to repeat our process only O(1) times.

Up to a multiplicative constant, the mean complexity of the algorithm is then equal to the complexity
of checking linearly independence of d vectors in a space of dimension 7, which is within O(r®) by Gaussian

elimination.

3.3.3 The Hermitian case

We now move to the Hermitian case, i.e. we assume that 7(I) =l and y; # +1. We thus want to design
an algorithm outputting a uniformly distributed random isotropic F;-subspace of K; (endowed with the
Hermitian pairing (—, —)k, defined in (2.3), assuming that the existence criterion of Corollary 3.3 is
fulfilled.

Actually, we will work in the following more general situation: we consider a finite field F' of cardinal-
ity qr equipped with a nontrivial involutive automorphism ¢ : F' — F. We also consider an Hermitian
space V of dimension r and denote by (—, —) the bilinear form on it. We assume that V has Witt index s
(i.e. that V is isomorphic to the orthogonal direct sum of s hyperbolic planes) and aim at sampling a
random isotropic subspace of V of dimension s.

For u,v € V, we consider the following equation in A:
(Euw): (u+ Av,u+ Ay =0.

We briefly recall its resolution. If (v,v) = 0, the equation reduces to Tracep/po (X - (v,u)) = —(u,u)
which, per surjectivity of the trace, can be solved as soon as (v, u) # 0.

On the contrary, when (v,v) # 0, we consider the discriminant of (£..) defined by
A = {u,v) - {v,u)y — (u,uy - {v,v). One readily checks that A is invariant under o and that the equation
(Eu,v) can be rewritten Normp/po ((u, v) + A -(v,v)) = A. The solutions of (£4,,) are then the elements

of the form
)\ — 6 — <u7 U>
(v,v)
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where § is a preimage of A by the norm map. Since the latter is surjective (because we are working over
finite fields), a solution always exists.

We are now ready to present Algorithm 2: it computes a basis (u1,...,us,v1,...,vs) of V such that
each pair (us,v;) is hyperbolic and, writing H;  V for the hyperbolic plane they generate, we have the
orthogonal decomposition V' = @;_, Hi.

Algorithm 2: Decomposition as a direct sum of hyperbolic planes (Hermitian case)

Input: V: the ambient Hermitian vector space
Output: u,v: a basis of hyperbolic pairs
L ouv,W<[],[]0
2: while W # V :
3:| pick two random vectors v and v in W+
4:|if (u,v) are linearly independent and {v,v) # 0 :
5:| A « a random solution of the equation (&, )

6:|u — u+ v /* now {u,uy=0 */
7:| A < a solution of the equation (&, )

8: |V — v+ Au /* now (v,vy=0 */
9:|v — v/{v,u) /* now (u,v) is a hyperbolic pair */

10:|u «— u+ [u], v v+ [v]
1|\W W + Fu+ Fv
12: return u,v

Proposition 3.10 Algorithm 2 is correct. Moreover, it terminates almost surely and its average com-

plexity is O(r*) operations in F°.

Proof. We first prove correctness. It follows from the construction that, after the first successful iteration
of the loop, (u,v) is a hyperbolic pair in V. Indeed, we notice that the subspace H; generated by u
and v does not change throughout the loop, and so it is still a plane at the end. Moreover, each update
successively ensures that (u, u) = 0, then {(v,v) = 0 and finally {u, v) = 1. We observe that (v, u) cannot
vanish on line 9 because otherwise the Hermitian form would be degenerated. After this, we update W
so that we continue to work in the orthogonal complement of H; which have dimension 2(s—1) and Witt
index s—1 thanks to Witt’s cancellation theorem. The induction then goes.

To prove termination, it is enough to justify that the probability of picking u and v satisfying the
requirements of line 3 is bounded from below by a positive absolute constant. When W has dimension
2d, the number of vectors u,v € W is ¢#*. On the other hand, a pair (u,v) is rejected when v is isotropic

or when u and v are collinear. The number of suitable pairs are then

(67 — (qF — D)(g& " + 1)) - (¢&' — ar)

(see the proof of Theorem 3.4 for the counting of isotropic vectors). One checks that the latter is at least

%qud as soon as qr > 3, meaning that the probability of success of the test in line 3 is at least ;—(7)
Finally, regarding complexity, we claim that each successful iteration of the loop costs at most O(r?)

operations in F?. To achieve this, we first observe that solving the equation (&,,,) amounts to find

a uniformly distrbuted preimage of the discriminant by the norm map; this can be done using the
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algorithms of [CL17] for a constant cost. Similarly solving (£,,.) reduces to a linear system, which can
be attacked by simple linear algebra over F'? for a constant cost again. Regarding the computation of
W, we may process as follows: we maintain a matrix M in reduced row echelon form representing the
subspace of V* = Homp(V, F') generated by the forms (—,w) with w € W. At each update of W on
line 11, we need to add two new lines to M and re-echelon it; this has a cost of O(r2) operations in F'
using standard Gaussian elimination. Moreover, knowing M, sampling u and v on line 3 amounts to
finding two random solutions of the linear system M X = 0. Since M is already row-echeloned, this can

be done for a cost of O(r?) operations in F as well. O

Finally, the link between Algorithm 2 and the question we are interested in is established in the next

proposition.

Proposition 3.11 If u, v is the output of Algorithm 2, then the space generated by u is a uniformly

distributed random isotropic subspace of V' of dimension s.

Proof. The fact that the span of u is an isotropic subspace of dimension s is clear. To prove that it is
uniformly distributed, we notice that, after line 3, the plane Fu + F'v is uniformly distributed among
all planes in W=. Since this plane stays unchained until the end of the loop, it remains uniformly
distributed.

We now fix a hyperbolic plane H © W, together with a nonisotropic vector v € H. We claim that,
when w varies in H, the vector u one obtains after the replacement of line 6 is uniformly distributed
in the set Zy of isotropic vectors in H. In order to prove this, for u € H, we define L(u) < H as the
affine line passing through v and directed by v. We also set S(u) := L(u) n Zg. Clearly, for any fixed u
noncollinear to v, the L(ou) form a partition of H\Fv when « varies in F'*. Since v is itself nonisotropic,

we conclude that

I = |_| S(ow). (3.4)

Moreover, the multiplication by « defines a bijection S(u) — S(awu); hence, all the S(au) have the same
cardinality. Coming back now to the algorithm, we notice that the effect of lines 5 and 6 is to replace u
by a uniformly distributed random vector in S(u). The decomposition (3.4), combined with the fact that
all S(au) have the same cardinality, then implies that the vector u obtained after line 6 gets uniformly
distributed in Zg when u varies on any given line of H that does not contain v. Since this holds for any
line, our claim is proved.

The proposition follows by combining all what precedes. O

3.3.4 The Euclidean case

We move to the Euclidean case, i.e. we consider the same setting as before expect that we now
assume that o is the identity. The equation (€.,,) continues to make sense but its resolution is a bit

different. Precisely, expanding the scalar product, we find that it is equivalent to

Cuyuy + 2X - lu, vy + A% - (v, ) = 0.
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If (v,v) = 0, it is a linear equation that we can solve as soon as (u,v) # 0. On the contrary, if (v,v) # 0,
it is a quadratic equation whose (reduced) discriminant is A := (u,v)* — (u, u) - {v,v) (this is in fact
the same as before!). The equation (£,,,) has no solution when A is not a square and it has one or two

solutions otherwise: if 62 = A, they are given by A = %.

Lemma 3.12 When u and v varies among pairs of noncollinear vectors in V', the probability that the

equation (£,,,) has a solution is at least 1.

Proof. The equation is solvable exactly when u and v span an hyperbolic plane since, thanks to Witt’s
theorem, a plane is hyperbolic as soon as it contains an isotropic vector. We then need to estimate the

probability that a given plane is hyperbolic. The total number of planes is given by

_ (@F = 1)(gF —qr)
(a7 — (g —aqr)

Counting the number of hyperbolic planes is more delicate. In order to do it, we consider the map

S: { pair of noncollinear

° ; } — {hyperbolic planes }
1sotropic vectors

(x.y) — Fo+Fy.

By the argument of the proof of Theorem 3.4, the fibers of S§ have all cardinality
2(gr — 1)(2(qr — 1) — (gr — 1)) = 2 - (gr — 1)>. Similarly, the domain of S has cardinality

(g7 — D(gp "+ 1)((gk — 1)(gy ' +1) — (qr — 1)). Hence, the number of hyperbolic planes is

A=

(g3 — 1)( ) (a5 — '4+1)—(qr — 1))
2- (qF - 1) '

The probability we are looking for is the quotient A/B, and calculus now proves that it is always greater

than =1 > 1. O
ar 2

From here, we can write down Algorithm 3 (which is a direct translation of Algorithm 2).

Proposition 3.13 Algorithm 3 is correct. It terminates almost surely and its average complexity is
O(r?’) operations in F'. Moreover, if u, v is the output of Algorithm 2, then the space generated by u is

a uniformly distributed random isotropic subspace of V' of dimension s.

Proof. After Lemma 3.12, this is a repetition of the proofs of Proposition 3.10 and 3.11. O

3.4 Enumeration of selfdual skew cyclic codes

We finally address the question of enumeration. As we already said earlier, an algorithm that outputs
in one shot the complete list of selfdual codes in Ex would only have a limited interest because the number
of such codes grows exponentially with respect to 7.

Instead, we will work with iterators, that are, roughly speaking, procedures that produce a new

item each time they are called, without precomputing the entire list at the beginning. Concretely, we
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Algorithm 3: Direct sum decomposition of hyperbolic planes in the Euclidean case

Input: V: the ambient Euclidean vector space
Output: u,v: a basis of hyperbolic pairs
L uv,W<[],[]0
2: while W # V :
3:| pick two random vectors u and v in W+
4:|if (u,v) are linearly independent and {v,v) # 0 :
5| A — (u,v)? — (u,uy - (v,v)
6:|if A is a square in F :
7:| A\ < a random solution of the equation (&, )

8:|u —u+ v /* now {u,uy=0 */
9:| A < a solution of the equation (&, )

10:|v < v+ Au /* now {(v,vy =0 */
11:|v <« v/{v,u) /* now (u,v) is a hyperbolic pair */

12:(u<—u+[ul, ve—v+[v]
13:|W W + Fu+ Fou
14: return u,v

model iterators by importing the keywords yield and next from the Python syntax. When a procedure
containing the keyword yield is called, it is not executed but instead returns an object called iterator,
which can be understood as a pointer to the current state of execution of the procedure. Now, each
time the iterator is called through the keyword next, the execution of the procedure continues until
a statement yield is encoutered; at that point, the execution is stopped and the iterator outputs the
attribute of the yield instruction.

In all what follows, we assume! that we have at our disposal, for all integers m < n and any finite
field F, an iterator producing the list of all matrices in reduced row echelon form with m rows and n
columns. We note that such matrices are in one-to-one correspondence with m-dimensional F-linear
subspaces of F™ (the subspace being the span of the rows of the matrix). In a similar fashion, we also
assume that, for any given linear system, we have at our disposal an iterator running over its solutions.

We now explain how to build iterators over each component of the product Whonpa1 X Wpar.

3.4.1 The nonpalindromic case

In this case, we have to construct an iterator running over all F;-linear subspaces of K;. In order to
reduce this task to a matrix enumeration, we first pick a basis of K; over F; (this can be done easily; for
example, a basis of K over F does the job). Once this is achieved, we take an iterator that runs over all

matrices over F; in reduced row echelon form with r columns, which directly solves our problem.

3.4.2 The Euclidean case

As in Subsection 3.3.4, we work with a general r-dimensional FEuclidean space V over a finite field

F of cardinality gr and assume that V has Witt index s. By the results of Subsection 3.3.4, we can

ISuch an iterator is available in many softwares, including SageMath. It is moreover easy to construct: we
iterate over the subset of I < {1,...,n} of cardinality m and, for each such I, we run over all the matrices in
reduced row echelon form with pivots at positions in I.

Page 22



Selfdual skew cyclic codes

further assume that we are given an hyperbolic basis of V, that is a basis (u1,...,us,v1,...,0s) such
that (u;,v;y = 1 and all other scalar products between elements in the basis vanish.

In order to take advantage of this basis, we will enumerate the s-dimensional subvector spaces of V'
in a slightly different manner. Those spaces are parametrized by the matrices M in reduced row echelon

form of size s x (2s), but we shall further split M and write it as a block matrix as follows:

A B
0 C

Here A, B and C all have s columns and the horizontal separation is positionned is such a way that the
last line of A is not identically zero. The matrices A and C are then reduced row echelon matrices of
size d x s and (s—d) x s respectively (for some d). Besides, the columns of B in front of the pivots of
C all vanish. Conversely, if we choose A, B and C satisfying the above conditions, the resulting block
matrix M will be in reduced row echelon form. In other words, there is a bijection between the matrices
M, on the one hand, and the triples (A, B, C'), on the other hand; in the sequel, we will constantly rely

on it to enumerate the M.

Remark 3.14 At the level of cardinalities, the above bijection leads to the (classical) formula

s 2
= o X
5 qF d=0 d qF

The (A, B, C)-presentation is quite interesting for our purpose because the isotropy condition trans-

lates to the equations:

ABY + BA" =0 (3.5)

AC" =0 (3.6)

Equation (3.6) means that the row-span of A should be orthogonal to the row-span of C for the standard
scalar product on F°. Since those two spaces have completary dimension, we conclude that RowSpan(C)
must be the orthogonal of RowSpan(A4). Given that, in addition, C' must also be in reduced row
echelon form, we conclude that C' is uniquely determined by A: it is the reduced row echelon basis of
RowSpan(A)*.

Once C is known, one also knows its pivots and the shape of B is determined. Equation (3.5) then
appears as a linear equation on the entries of B, which can be easily solved using Gaussian elimination.

All of this leads to Algorithm 4.

Regarding complexity, it is clear that, in the worst case, an iteration of Algorithm 4 requires at most
O(r%) operations in F since it only involves Gaussian elimination in dimension at most O(r?). However,
in most cases, an iteration only consists in going from one solution B to the next one; once a basis of

the space of solutions has been computed, this costs only O(r?) operations in F.

Remark 3.15 Denoting by d the number of rows of A, one can prove that the linear system (3.5)
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Algorithm 4: Iterator over maximal isotropic spaces (Euclidean case)

1. A < iterator over reduced row echelon matrices over F' with s columns

2: while A — next(A) :
3:|C' « reduced row echelon basis of RowSpan(A)*
4:| B « iterator over solutions of (3.5) with vanishing columns in front of pivots of C
5:|while B « next(B) :

. A B
6:|yield (O C)

consists of @ linearly independent equations. Therefore, the set of admissible B is a F-vector space
d
of dimension MQ_Q = (g); hence it has cardinality ql(f). From this, we derive that the number of isotropic

subspaces of V' of dimension s is equal to
S d s
> ql(f)[ ]
d=0 d aF
Comparing with Segre’s formula (see Theorem 3.4), we find the identity
s—1 4 s (d) s
H(l +qr) = Z 0
d=0 d=0 d ar
which is actually a special case of the well-known polynomial identity [PA71]:
n—1 n N
[Ta+dn=Y q(2)[ } . (3.7)
k=0 k=0 k q

As a byproduct, our approach then provides a bijective proof of this identity when ¢ = 1 and ¢ is a power

of a prime number.

3.4.3 The Hermitian case

We now equip F' with a nontrivial involution o : F' — F and assume that the pairing (—,—) on V'
is o-sesquilinear. In this new situation, all the discussion of Subsection 3.4.2 applies, except that the

Equations (3.5) and (3.6) have to be replaced by the following ones:
Ac(B™) + Bo(A") =0 (3.8)
Ac(C™) =0 (3.9)
As in the Euclidean case, it turns out that Equation (3.9) fully determines C; precisely C is the reduced
row echelon basis of RowSpan(o(A))*. Similarly, Equation (3.8) provides a linear system on the entries
on B but we need to careful that it is F'?-linearity and not F-linearity as before. Anyway, the system

can equally be solved using Gaussian elimination.

Taking these remarks into account, we end up with Algorithm 5

Remark 3.16 Similarly to the Euclidean case, our approach gives a bijective proof of the numerical
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Algorithm 5: Iterator over maximal isotropic spaces (Hermitian case)
1. A < iterator over reduced row echelon matrices over F' with s columns
2: while A — next(A) :
3:|C' « reduced row echelon basis of RowSpan(a(A))+
4:| B « iterator over solutions of (3.8) with vanishing columns in front of pivots of C
5:|while B « next(B) :

. A B
yield ( 0 C)

6:

identity
s—1 s
2
[[a+a) =] Q?/Q[Z]
d=0 d=0 ar

which is Equation (3.7) evaluated at ¢ = ¢r and ¢t = /q.

3.5 An implementation in SageMath

We implemented the algorithms of this section in SageMath. Our package is available at
https://plmlab.math.cnrs.fr/caruso/selfdual-skew-cyclic-codes
It consists in a main class instantiated with the extension K/F of order r and a palindromic poly-
nomial of the center P(X") in F(X*") of K[X*';6] as constructor parameters. It provides an iterator
on all selfdual codes for the Ore algebra K[X*';8]/P(X"). Hereunder, we present a bunch of examples
covering all the encoutered situations : palindromic Euclidean and palindromic Hermitian.

We start by loading our package and defining the relevant base rings.

sage: load("selforthogonal_codes .sage")

None

sage: q = s = 3; F = GF(q); Fy.<y> = F[]

sage: Q = F[’z’].irreducible_element (2*s, "adleman-lenstra")
sage: Q

z"6 + z°6 + z74 + z°3 + z72 + z + 1

Case 3.17 Palindromic Euclidean: ¢ =3, s=3and P(Y)=Y —1

sage: A = SelfDualCodes(y - 1, Q)
sage: iter = A.enumerate_selfdual_codes()

sage: next(iter)

x~3 + (275 + 2%¥z°~4 + z~3 + 2%z"2)*x"2 + (2*xz"4 + 2%z~3 + 1)*x + z~4 + z
3 + 2%z"2 + 2%z + 1

sage: next (iter)

x~3 + (2*%z~4 + 2%z~2 + z + 2)*x"2 + (275 + 274 + z~3 + 2*xz"2 + z + 2)*x

+ z°3 + z72 + z + 2
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P(Y) q=3 q=>5 q="1 q=3
Y -1 no codes. no codes. no codes. no codes.
Y3 — 1 | inseparable | no codes. no codes. | inseparable
YS—1 no codes. inseparable | no codes. no codes.
Y7 -1 no codes. no codes. inseparable | no codes.
YY — 1 | inseparable | no codes. no codes. | inseparable
Y+1 9 ms 9 ms 16 ms 21 ms
Y241 16 ms 6 ms 15 ms 15 ms
Y3 4+ 1 | inseparable 26 ms 22 ms inseparable
Y441 18 ms 21 ms 35 ms 48 ms
Yo +1 62 ms inseparable 111 ms 128 ms
Y% + 1 | inseparable 47 ms 59 ms inseparable
Y7 +1 80 ms 300 ms inseparable 250 ms
Y8 +1 463 ms 87 ms 113 ms . 108 ms
Y? 4+ 1 | inseparable 218 ms 125 ms inseparable

Figure 1: Timings for s = 2

Case 3.18 Palindromic Hermitian case: ¢ =3, s =3 and P(Y) =Y? + 1

sage: A =
sage: iter =
sage: next (iter)

x~6 +

SelfDualCodes (y~2 + 1, Q)

A.enumerate_selfdual_codes()

(2*xz~5 + z74 + z~2 + 2)*x°5 + (275 + 273 + 2%z~2 + 2%z + 2)*x"4 +

(z°5 + z°3)*x~3 + (25 + z°2 + 1)*x"2 + (275 + 2*z~4 + z°3 + z~2 + 2x

zZ + 1)*x + z°5 + 273 + 2*xz"2 + z + 2

Benchmarks for a larger set of inputs are reported on Figures 1, 2 and 3; there were run on computer

with Intel(R) Core(TM) i7-9750H CPU 2.60GHz processor x64 and 16 GB of RAM.

4 Enumeration of purely inseparable selfdual skew cyclic

codes

We now address the case where k is not coprime to the characteristic p. We aim at finding an

enumeration algorithm of selfdual skew cyclic codes in this case too. If k decomposes as k'p™ with k’
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PY) q=3 q=5 q="1 q=3
Y -1 21 ms no codes. 207 ms no codes.
Y3 — 1 | inseparable | no codes. 42 ms inseparable
Y°—1 101 ms inseparable 129 ms no codes.
Y7—-1 195 ms no codes. inseparable | no codes.
Y? — 1 | inseparable | no codes. 342 ms inseparable
Y+1 no codes. 21 ms no codes. 56 ms
Y241 152 ms 12 ms 36 ms 32 ms

Y3 4+ 1 | inseparable 57 ms no codes. | inseparable
Yt+1 38 ms 47 ms 74 ms 141 ms
Y°+1 no codes. inseparable | no codes. 317 ms
Y% 4+ 1 | inseparable 101 ms 139 ms inseparable
Y'+1 no codes. 398 ms inseparable 601 ms .
Y8 +1 209 ms 270 ms 270 ms 280 ms
Y? 4+ 1 | inseparable 450 ms no codes. | inseparable

Figure 2: Timings for s = 3

PY) qg=3 qg=>5 q="1 q=23°
Y -1 no codes. no codes. no codes. no codes.
Y3 — 1 | inseparable | no codes. no codes. | inseparable
Y® -1 | nocodes. | inseparable | no codes. no codes.
Y7 -1 no codes. no codes. inseparable | no codes.
Y? — 1 | inseparable | no codes. no codes. | inseparable
Y +1 59 ms 49 ms 58 ms 177 ms
Y241 78 ms 29 ms 89 ms 69 ms
Y3 +1 | inseparable 128 ms 90 ms inseparable
Y441 88 ms 108 ms 174 ms 412 ms
Y5 +1 220 ms inseparable 336 ms 723 ms
Y% + 1 | inseparable 200 ms 388 ms inseparable
Y7 +1 286 ms 387 ms inseparable 1367 ms
Y& +1 406 ms . 551 ms 586 ms 2159 ms
Y? 4+ 1 | inseparable 691 ms 784 ms inseparable

Figure 3: Timings for s =4
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coprime with p, it follows easily from the chinese remainder isomorphism

E, ~ K[Y, X;0]/(Y" —1, X" —Y)

m

~ (K[Y, X;0]/(Y* — 1) /(X" =y 77 )"

( [y, x;01/ [ R(Y) ) X" —yem )"

1<i<n

12

m

e

H (K[Y, X;0]/P(Y)) /(X" — Yp—}n)p

1<i<n

that we can recover an enumeration algorithm for any k£ by combining the separable case and the case

where k = p™ (purely inseparable case).

4.1 Enumeration of purely inseparable selfdual skew cyclic codes

In order to solve the purely inseparable case, we follow a factorization approach, inspired by but
slightly different from that of article [BU14]. We introduce twisted skew separable codes E,(flxt), that
are slight generalizations of previously considered skew separable codes. They are defined as skew
separable codes of Eg) corresponding to the usual adjunction on Eg) composed with the conjugation by
X for £ € K; and t € {0,s}. We will then obtain all inseparable selfdual codes as products of twisted

skew separable selfdual codes.

Definition 4.1 We fix parameters ¢t € {0, s}, £ € K;. We denote by Eglxt), the space Eg) equipped
with the £X'-twisted bilinear form (k, p) = Tracex,r, (C.£60" (a1(p))).

The corresponding adjunction is f*x'¢=t = X'¢71¢71 Y, X oy (f;)(EX"; we have

(5, F(P)EXD = (f2xte (), )X,

In the sequel, we will take 0;(¢) = £, and if t = s 0°(£) = —¢, so that the £ X' -twisted bilinear form

enjoys following symmetries:
e it is Euclidean if y; = +1 and ¢t = 0,
e it is Hermitian if y; # +1 and ¢t = 0,
e it is skew-Euclidean if y; = +1 and ¢ = s,
e it is skew-Hermitian if y; # +1 and ¢t = s.

Remark 4.2 Reusing the method of Remark 3.5, we can compute the number of twisted codes when

k = 1. For example, in the skew-Euclidean case, it is given by

Card (Sp,, (F
. =TTa+q¢"
qf(s+l)/2 Card H

where Sp,, stands for the symplectic group. We refer to [Han05] for more details.

Lemma 4.3 The set of ¢-twisted selfdual skew cyclic codes is in bijection with the set of nontwisted

selfdual skew cyclic codes and their intersection is empty if °(§) # &.
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Proof. We have for any monic skew polynomial f of degree s generating a selfdual code Cy of E,(Cl):

FESt ! = R XX = 1) = FOX (X =)

where f(0) denotes the constant term in f. As we assume & to be oj-invariant, by Hilbert-90, we can

1

solve the equation yoi(y) = ¢ for v in K;? . Noting then g = oy(7)fy™}, we get a bijection f — g

between nontwisted and £-twisted selfdual skew cyclic codes:

1 =
o1(7)

g9°¢ =a(V)ff° fO)X*(X" - 1)

Moreover, if we assume 0°(€) # € and ff* = ff* = fE7'f*°¢ =01in Eg), then by evaluating lifts at 0,
we get f(0) = )‘(0)%7 and so f(0) = 0 and thus f = 0, which contradicts the hypothesis. |

Algorithm 6 is an iterator that enumerates selfdual skew cyclic codes sitting in Ey. It is exhaustive,

in the sense that it lists every selfdual code at least once, but it is slightly redundant.

Algorithm 6: Enumeration of purely inseparable selfdual skew cyclic codes

1: C <« array of length p™ of maps of iterators on all twisted codes indexed by all possible

twists sz(degs(f)%Q) where { can be choosen among all representatives of Py, in Ky if deg(f)

S
is even and otherwise among all representatives of P, in K; that are antisymmetric
relatively to 0°.

2: procedure RUNTHROUGHREMAININGCODES( f)
3. 7 — deg(f)
S
4: ifi=pm:
5:]  yield f
6: else

7.  while f; < next(C[i][f(0)X*(%2)]) :
8:|  RunThroughRemainingCodes(f; f)

9: RunThroughRemainingCodes(1)

Theorem 4.4 Algorithm 6 is correct and exhaustive

Proof. In order to enumerate all inseparable selfdual skew cyclic codes, at the cost of some redundancy, we
can assume without loss of generality (See the last part of the proof, hereunder) that the general solution
is a product of twisted selfdual skew cyclic codes f ... fn, where the f; are left monic. We start by solving
the equation f,fn =0 mod (X" — 1). This has been done in the preceding section. Now we obtain a

scalar k, = #Jll) which is equal to f»(0). Let o, be defined by f;“" = o1(kn)fi kn " '. The equation
Fro1 XS farm

m. At the next

becomes fr,—1 X*fan = 0(X" —1). Solving it, we now obtain a scalar #,—1 =
step, the monomials X *® cancel, and we are back in the Hermitian case: fn,Qf;ig*“‘" =0(X"-1). And
so on so forth, getting alternatively a skew Hermitian (resp. skew Euclidean) and a Hermitian (resp.
Euclidean) bilinear form. We have to check that the k; satisfy the required symmetry for the selfdual

skew cyclic codes to exist. A monic polynomial f satisfying the product criterion: ff®~xt =0 in E,(:lxt)
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has a constant term f(0) satisfying:

(X2 4+ fFONRXY(XTFO) 4+ -+ X%) =0 (0)° T (FO)XX' X" + fF(O)X'X?

OCXT-%—S-H& _ Xs+t

Thus we have:

0°(f(0)) = —f(0) forb°(k)=r,t=0 (4.1)
0°(k) = —k fort = s (symplectic case) (4.2)
—f(0)k = 0°(kf(0)) fort=0 (4.3)

If we start with k = 1, we get the symplectic case from (4.1) and (4.2) with x satisfying 6°(k) = —k,
at the next step. We have then an orthogonal case, then again alternatively a symplectic case with &
satisfying 0°(k) = —k from (4.3), etc.

We now prove that the algorithm is exhaustive. We observe that the projection

m

B = Ki[XFh0)/(x7 - 17" — K[XF0]/(x - 1) = E{

fo- 7

preserves the selforthogonality property. Noting fpm := f the unique lift of f on the basis (X*)o<i<r,
we have a factorization f,m = rpmgpm for a skew polynomial rp,m of degree striclty less than s and a
selfdual skew cyclic code gpm in E;. Indeed any selforthogonal subspace of Egl) of dimension strictly
less than r, corresponding to a monic skew polynomial f can be extended, by Witt’s decomposition, to
a maximal isotropic space corresponding to a selfdual monic skew polynomial g of degree s. Now this

vector space inclusion corresponds by duality to a factorization f = rg for a skew polynomial 7 of degree

g*TrL gpm

striclty less than s. Expressing (X" — 1) as a product of the selfdual codes gpm, T
D

we get that

any selforthogonal skew cyclic code f € E;cl) can be written in the form

*
j— T J— — 7gpm m e
f=nX )+ fo (hgpm (0)X> +7p ) 9p

where deg h = (p™ —2)s and m%‘m € K;[X; 0] is of degree s. Let us note f' = gm

We have deg f' = (p™ —1)s and f’gpm (f'gpm)* = f/g(0)X*f*(X" —=1) =0 mod (X" —1)?" and hence
frFXom© =0 mod (X" — 1)?" ', With the same reasoning, replacing f by f’ and the adjunction

g:ﬂL +rpm.

* by @xag m(0), We get yet another twisted separable selfdual skew cyclic code fpm_1 and another skew
polynomial f” such that f” f"*%m-1@95m(© = mod (X" —1)?" 2. In turn replacing f’ by f” and the
adjunction ex:g .. (0) by ®5. m_,(0)g,m (0), We get yet another twisted separable selfdual skew cyclic code
gpm 2 and another skew polynomial f” such that f” f"*X"9pm—2@spm_1(Mam () = mod (X" —1)P" 3,
Per induction we thus a factorization gogi - - - gpm—1gpm of f into twisted separable selfdual skew cyclic

codes as claimed. O

Remark 4.5 We notice the reason for the redundancy in the enumeration algorithm from the above
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proof of the exhaustivity. Indeed the many different factorizations f; = r;g; for selforthogonal f; at each

step lead to as many redundant enumerations of the same inseparable selfdual skew cyclic code f.

4.2 SageMath enumeration of inseparable selfdual skew cyclic codes

For F = GF(3), K = GF(3°) and k = 3, the upper bound on the number of generated inseparable
selfdual skew cyclic codes is numerically equal to 80 x 1120 x 80, where 80 is the number of orthogonal
isotropic spaces and 1120 the number of symplectic isotropic spaces (see Remark 4.2). A SageMath enu-
meration based on this algorithm provides a number n of maximal isotropic codes equal to n = 2360960.
We have not many redundancies since 80 x 1120 x 80 &~ 3 x 2360960. For the purpose of this heavy com-
putation we implemented the PARI/GP optimization for finite field extensions in a dedicated branch of
our code, which is only valid for prime base fields. The computation takes place in less than 10 minutes

on the aforementioned computer.
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