3D laser engineering of molten core optical fibers: toward a new generation of harsh environment sensing devices - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Advanced Optical Materials Année : 2022

3D laser engineering of molten core optical fibers: toward a new generation of harsh environment sensing devices

Résumé

Aluminosilicate glasses offer wide-ranging potential as enabling materials for a new generation of optical devices operating in harsh environments. In this work, a nonconventional manufacturing process, the molten core method, is employed to fabricate and study sapphire (Al$_2$O$_3$) and YAG (yttrium aluminum garnet) derived all-glass silicate optical fibers in which a femtosecond (fs) laser is used to imprint oriented nanostructures inside the fiber cores. Both writing kinetics and thermal stability of the laser-modified regions are investigated over a wide temperature range (20–1200 °C). The laser-imprinted modifications in these high alumina-content fibers exhibit improved thermal stability with respect to commercial pure silica and GeO$_2$-doped silica analogs. Furthermore, optical devices in the form of Rayleigh backscattering and fiber Bragg grating sensors are fabricated to demonstrate the high-temperature sensitivity and stability of these nonconventional fibers. This functionalization of aluminosilicate fibers by fs-laser direct writing opens the door to a new generation of optical devices suitable for high-temperature operation.
Fichier principal
Vignette du fichier
WanCavBaetal22.pdf (2.93 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Licence : CC BY NC - Paternité - Pas d'utilisation commerciale

Dates et versions

hal-04125496 , version 1 (12-06-2023)

Licence

Paternité - Pas d'utilisation commerciale

Identifiants

Citer

Yitao Wang, Maxime Cavillon, John Ballato, Thomas Hawkins, Tino Elsmann, et al.. 3D laser engineering of molten core optical fibers: toward a new generation of harsh environment sensing devices. Advanced Optical Materials, 2022, 10 (18), pp.2200379. ⟨10.1002/adom.202200379⟩. ⟨hal-04125496⟩
20 Consultations
24 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More