Tame Algebras Have Dense g-Vector Fans - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2023

Tame Algebras Have Dense g-Vector Fans

Résumé

The g-vector fan of a finite-dimensional algebra is a fan whose rays are the g-vectors of its two-term presilting objects. We prove that the g-vector fan of a tame algebra is dense. We then apply this result to obtain a near classification of quivers for which the closure of the cluster g-vector fan is dense or is a half-space, using the additive categorification of cluster algebras by means of Jacobian algebras. As another application, we prove that for quivers with potentials arising from once-punctured closed surfaces, the stability and cluster scattering diagrams only differ by wall-crossing functions on the walls contained in a separating hyperplane. The appendix is devoted to the construction of truncated twist functors and their adjoints.
Fichier principal
Vignette du fichier
2007.04215.pdf (440.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04122823 , version 1 (08-02-2024)

Identifiants

Citer

Pierre Guy Plamondon, T. Yurikusa, B. Keller. Tame Algebras Have Dense g-Vector Fans. International Mathematics Research Notices, 2023, 2023 (4), pp.2701-2747. ⟨10.1093/imrn/rnab105⟩. ⟨hal-04122823⟩
34 Consultations
36 Téléchargements

Altmetric

Partager

More