Positive Solutions for Slightly Subcritical Elliptic Problems Via Orlicz Spaces - Archive ouverte HAL
Journal Articles Milan Journal of Mathematics Year : 2022

Positive Solutions for Slightly Subcritical Elliptic Problems Via Orlicz Spaces

Abstract

Abstract This paper concerns semilinear elliptic equations involving sign-changing weight function and a nonlinearity of subcritical nature understood in a generalized sense. Using an Orlicz–Sobolev space setting, we consider superlinear nonlinearities which do not have a polynomial growth, and state sufficient conditions guaranteeing the Palais–Smale condition. We study the existence of a bifurcated branch of classical positive solutions, containing a turning point, and providing multiplicity of solutions.
Fichier principal
Vignette du fichier
Positive solutions for slightly subcritical elliptic problems via Orlicz spaces.pdf (476 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04121020 , version 1 (07-06-2023)

Identifiers

Cite

Mabel Cuesta, Rosa Pardo. Positive Solutions for Slightly Subcritical Elliptic Problems Via Orlicz Spaces. Milan Journal of Mathematics, 2022, 90 (1), pp.229-255. ⟨10.1007/s00032-022-00354-1⟩. ⟨hal-04121020⟩
11 View
11 Download

Altmetric

Share

More