Positive Solutions for Slightly Subcritical Elliptic Problems Via Orlicz Spaces - Archive ouverte HAL
Article Dans Une Revue Milan Journal of Mathematics Année : 2022

Positive Solutions for Slightly Subcritical Elliptic Problems Via Orlicz Spaces

Résumé

Abstract This paper concerns semilinear elliptic equations involving sign-changing weight function and a nonlinearity of subcritical nature understood in a generalized sense. Using an Orlicz–Sobolev space setting, we consider superlinear nonlinearities which do not have a polynomial growth, and state sufficient conditions guaranteeing the Palais–Smale condition. We study the existence of a bifurcated branch of classical positive solutions, containing a turning point, and providing multiplicity of solutions.
Fichier principal
Vignette du fichier
Positive solutions for slightly subcritical elliptic problems via Orlicz spaces.pdf (476 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04121020 , version 1 (07-06-2023)

Identifiants

Citer

Mabel Cuesta, Rosa Pardo. Positive Solutions for Slightly Subcritical Elliptic Problems Via Orlicz Spaces. Milan Journal of Mathematics, 2022, 90 (1), pp.229-255. ⟨10.1007/s00032-022-00354-1⟩. ⟨hal-04121020⟩
11 Consultations
16 Téléchargements

Altmetric

Partager

More