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POSITIVE SOLUTIONS FOR SLIGHTY SUBCRITICAL
ELLIPTIC PROBLEMS VIA ORLICZ SPACES

MABEL CUESTA AND ROSA PARDO

Abstract. This paper concerns semilinear elliptic equations in-
volving sign-changing weight function and a nonlinearity of sub-
critical nature understood in a generalized sens. Using an Orlicz-
Sobolev space setting, we consider superlinear nonlinearities which
do not have a polynomial growth, and state sufficient conditions
guaranteeing the Palais-Smale condition. We study the existence
of a bifurcated branch of classical positive solutions, containing a
turning point, and providing multiplicity of solutions.

Positive solutions, subcritical nonlinearity, changing sign weight.
[2020]58E07, 35J20, 35B32, 35J25, 35J61

1. Introduction

In this paper we study the classical positive solutions to the Dirichlet
problem for a class of semilinear elliptic equations whose nonlinear term
is of subcritical nature in a generalized sens and involves indefinite
nonlinearities. More precisely, given Ω ⊂ RN , N > 2, a bounded,
connected open subset, with C2 boundary ∂Ω, we look for positive
solutions to:

(1.1) −∆u = λu+ a(x)f(u), in Ω, u = 0, on ∂Ω,

where λ ∈ R is a real parameter, a ∈ C1(Ω̄) changes sign in Ω,

(1.2) f(s) := g(s) + h(s), with h(s) :=
|s|2∗−2s

[ln(e+ |s|)]α
,

2∗ = 2N
N−2

is the critical Sobolev exponent, α > 0 is a fixed exponent,
and g ∈ C1(R) satisfies

(H)


(H)0 lims→0

f(s)
|s|p−2s

= L1, for some L1 > 0, and p ∈
(
2, 2N

N−2

]
(H)∞ lims→∞

g(s)
|s|q−2s

= L2, for some L2 ≥ 0, and q ∈
(
2, 2N

N−2

)
(H)g′ |g

′(s)| ≤ C(1 + |s|q−2), for s ∈ R.

The second author is supported by grants PID2019-103860GB-I00, MICINN,
Spain, and by UCM-BSCH, Spain, GR58/08, Grupo 920894.
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2 MABEL CUESTA AND ROSA PARDO

We will say that g (or even f) satisfies hypothesis (H) whenever
(H)0, (H)∞, and (H)g′ are satisfied. Since we are interested in positive
solutions, we

(1.3) redefine f to be zero on (−∞, 0],

note that f(0) = 0 and that

(1.4) lim
s→0+

(
f(s)

s
− L1|s|p−2

)
= 0.

When λ = 0, a(x) ≡ 1 and g(s) ≡ 0, this kind of nonlinearity has
been studied in [5, 6, 7, 16], and in [11] for the case of the p−laplacian
operator, with α > p

N−p . It is known the existence of uniform L∞ a
priori bounds for any positive classical solution, and as a consequence,
the existence of positive solutions. When α → 0, there is a positive
solution blowing up at a non-degenerate point of the Robin function as
α→ 0, see [9] for details.

From [10] it is known that (λ1, 0) is a bifurcation point of positive
solutions (λ, uλ) to the equation (1.1) .

For f behaving like |u|p−2u at zero with 2 ≤ p ≤ 2∗, the influence
of the negative part of the weight a is displayed under the sign of∫

Ω
a(x)ϕ1(x)p dx, where ϕ1 is the first positive eigenfunction for −∆ in

H1
0 (Ω). Specifically, whenever

(1.5)
∫

Ω

a(x)ϕ1(x)p dx < 0

the bifurcation of positive solutions from the trivial solution set is ’on
the right’ of the first eigenvalue, in other words for values of λ > λ1.
And whenever ∫

Ω

a(x)ϕ1(x)p dx > 0

the bifurcation from the trivial solution set is ’on the left’ of the first
eigenvalue, in other words for values of λ < λ1.

Inspired by the work of Alama and Tarantello in [1], we will focus
our attention to the case a(x) changing sign and (1.5) is satisfied, and,
among other things, we will prove the existence of a turning point for
a value of the parameter Λ > λ1, and in particular the existence of
solutions when λ = λ1. We will use local bifurcation and variational
techniques.

All throughout the paper, for v : Ω→ R, v = v+ − v− where

v+(x) := max{v(x), 0} and v−(x) := max{−v(x), 0}.
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Let us also define

Ω± := {x ∈ Ω : ±a(x) > 0}, Ω0 := {x ∈ Ω : a(x) = 0},
and assume that both Ω+, Ω− are non empty sets.

For this nonlinearity the Palais-Smale condition of the energy func-
tional becomes a delicate issue, needing Orlicz spaces and a Orlicz-
Sobolev embedding theorem.

In order to prove (PS) condition, Alama and Tarantello ([1]) as-
sume that the zero set Ω0 has a non empty interior. This is also a
common hypothesis for other authors when dealing with changing sign
superlinear nonlinearities [8, 21, 23]. But this is a technical hypothesis.
(PS)-condition will be proved in Proposition 3.1 without assuming that
hypothesis.
We neither use Ambrosetti-Rabinowitz.

Let us now denote

(1.6) C0 = inf{C ≥ 0 : f ′(s) + C ≥ 0 for all s ≥ 0},
and remark that hypothesis (H) implies that C0 < +∞. Observe also
that

(1.7) f(s) +C0s ≥ 0, for all s ≥ 0; f(s)s+C0s
2 ≥ 0, for all s ∈ R.

Let u be a weak solution to (1.1). By a regularity result, see Lemma
2.1, u ∈ C2(Ω)∩C1,µ(Ω). So by a solution, we mean a classical solution.

Assume that u is a non-negative nontrivial solution. It is easy to see
that the solution is strictly positive. Indeed, adding ±C0a(x)u to the
r.h.s. of the equation, splitting a = a+− a−, taking into account (1.4),
and letting in each side the nonnegative terms, we can write(

−∆ + a−(x)

[
f(u)

u
+ C0

]
+ C0a(x)+

)
u(1.8)

= λu+ a(x)+
[
f(u) + C0u

]
+ C0a(x)−u, in Ω.

Now, the strong Maximum Principle implies that u > 0 in Ω, and
∂u
∂ν
< 0 on ∂Ω.

Our main result is the following theorem.

Theorem 1.1. Assume that g ∈ C1(R) satisfies hypothesis (H). Let
C0 > 0 be defined by (1.6). If a changes sign in Ω, and (1.5) holds,
then there exists a Λ ∈ R,

λ1 < Λ < min
{
λ1

(
int (Ω0)

)
, λ1

(
int
(
Ω+ ∪ Ω0

))
+ C0 sup a+

}
and such that (1.1) has a classical positive solution if and only if λ ≤ Λ.
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Moreover, there exists a continuum (a closed and connected set) C of
classical positive solutions to (1.1) emanating from the trivial solution
set at the bifurcation point (λ, u) = (λ1, 0) which is unbounded.

Furthermore,
(a) For every, λ ∈

(
λ1,Λ), (1.1) admits at least two classical or-

dered positive solutions.
(b) For λ = Λ, problem (1.1) admits at least one classical positive

solution.
(c) For every λ ≤ λ1, problem (1.1) admits at least one classical

positive solution.

The paper is organized in the following way. Section 2 contains a
regularity result and a non existence result. (PS)-condition and an
existence of solutions result for λ < λ1 based in the Mountain Pass
Theorem will be proved in Section 3. A bifurcation result for λ > λ1

is developped in Section 4. The main result is proved in Section 5.
Appendix A contains some useful estimates. Orlicz spaces, a Orlicz-
Sobolev embeddings theorems, and variational techniques, also includ-
ing a (PS) condition in Orlicz-Sobolev spaces setting and the Mountain
Pass Theorem, will be treated in Appendix B.

2. A regularity result and a non existence result

Next, we recall a regularity Lemma stating that any weak solution
is in fact a classical solution.

Lemma 2.1. If u ∈ H1
0 (Ω) weakly solves (1.1) with a continuous func-

tion f with polynomial critical growth

|f(x, s)| ≤ C(1 + |s|2∗−1),

then, u ∈ C2(Ω) ∩ C1,µ(Ω) and

‖u‖C1,µ(Ω) ≤ C
(

1 + ‖u‖2∗−1

L(2∗−1)r(Ω)

)
,

for any r > N and µ = 1 − N/r. Moreover, if ∂Ω ∈ C2,µ, then u ∈
C2,µ(Ω).

Proof. Due to an estimate of Brézis-Kato [3], based on Moser’s iteration
technique [17], u ∈ Lr(Ω) for any r > 1; and by elliptic regularity
u ∈ W 2,r(Ω), for any r > 1 (see [22, Lemma B.3] and comments below).

Moreover, by Sobolev embeddings for r > N and interior elliptic
regularity u ∈ C1,α(Ω) ∩ C2(Ω). Furthermore, if ∂Ω ∈ C2,α, then
u ∈ C2,α(Ω). �
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Proposition 2.2. Let f satisfy hypothesis (H) and let C0 be defined in
(1.6). Assume that a changes sign in Ω.

(1) Problem (1.1) does not admit a positive solution u ∈ H1
0 (Ω) for

any
λ ≥ λ1

(
int
(
Ω+ ∪ Ω0

))
+ C0 sup a+.

(2) If int (Ω0) 6= ∅, then λ1

(
int (Ω0)

)
< +∞ and (1.1) does not

admit a positive solution for any

λ ≥ λ1

(
int (Ω0)

)
.

Proof. 1. Let λ ≥ λ1

(
int
(
Ω+∪Ω0

))
+C0 sup a+, and assume by contra-

diction that there exists a non-negative non-trivial solution u ∈ H1
0 (Ω)

to (1.1) for the parameter λ. Since the Maximum Principle u > 0 in
Ω, see (1.8).

Let ϕ̂ be the positive eigenfunction of
(
− ∆, H1

0 (int
(
Ω+ ∪ Ω0

)))
of L2-norm equal to 1. For simplicity we will denote also by ϕ̂ the
extension by 0 of ϕ̂ in all Ω. By Hopf’s maximum principle we have
∂ϕ̂
∂ν
< 0 on ∂

(
int
(
Ω+ ∪ Ω0

))
, where ν is the outward normal.

Again if we multiply the equation (1.1) by ϕ̂ and integrate along
int
(
Ω+ ∪ Ω0

)
we find, after integrating by parts,

0 >

∫
∂(int(Ω+∪Ω0))

u
∂ϕ̂

∂ν
dσ

+

∫
int(Ω+∪Ω0)

[
λ1

(
int (Ω+ ∪ Ω0)

)
− λ+ C0a

+(x)
]
uϕ̂ dx

=

∫
Ω+

a+(x)
[
f(u) + C0u

]
ϕ̂ dx > 0,

a contradiction.
2. Let λ ≥ λ1

(
int (Ω0)

)
and assume by contradiction that there

exists a positive solution u ∈ H1
0 (Ω) of problem (1.1) for the parameter

λ. Let ϕ̃ be a positive eigenfunction associated to λ1

(
int (Ω0)

)
< +∞.

For simplicity we will also denote by ϕ̃ the extension by 0 in all Ω. If
we multiply equation (1.1) by ϕ̃ and integrate along Ω0 we find, after
integrating by parts,∫

int (Ω0)

∇u · ∇ϕ̃ dx = λ

∫
int (Ω0)

uϕ̃ dx.

On the other hand∫
int (Ω0)

∇u · ∇ϕ̃ dx = λ1(int (Ω0))

∫
int (Ω0)

ϕ̃u dx+

∫
∂(int (Ω0))

u
∂ϕ̃

∂ν
dσ.
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Hence

0 >

∫
∂(int (Ω0))

u
∂ϕ̃

∂ν
dσ =

(
λ− λ1

(
int (Ω0)

)) ∫
int (Ω0)

uϕ̃ dx ≥ 0,

a contradiction. �

3. An existence result for λ < λ1

In this section we prove the existence of a nontrivial solution to
equation (1.1) for λ < λ1, through the Mountain Pass Theorem.

3.1. On Palais-Smale sequences. In this subsection, we define the
framework for the functional Jλ associated to the problem (1.1)λ . Here-
after we denote by ‖ · ‖ the usual norm of H1

0 (Ω):

‖u‖ =

(∫
Ω

|∇u|2 dx
)1/2

.

Given f(s) = h(s) + g(s) defined by (1.2), let us denote by F (s) :=∫ s
0
f(t) dt. Observe that (1.7) implies the following

(3.1) F (s) +
1

2
C0s

2 ≥ 0, for all s ≥ 0.

Consider the functional Jλ : H1
0 (Ω)→ R given by

Jλ[v] :=
1

2

∫
Ω

|∇v|2 dx− λ

2

∫
Ω

(v+)2 dx−
∫

Ω

a(x)F (v+) dx.

Observe that for all v ∈ H1
0 (Ω), Jλ

[
v+
]
≤ Jλ[v].

The functional Jλ is well defined and belongs to the class C1 with

J ′λ[v]ψ =

∫
Ω

∇v∇ψ dx− λ
∫

Ω

v+ψ dx−
∫

Ω

a(x)f(v+)ψ dx,

for all ψ ∈ H1
0 (Ω). Consequently, non-negative critical points of the

functional Jλ correspond to non-negative weak solutions to (1.1).
The next Proposition proves that Palais-Smale sequences are bounded

whenever λ < λ1(intΩ0), where λ1(intΩ0) may be infinite.

Proposition 3.1. Assume that g ∈ C1(R) satisfies hypothesis (H) and
assume also that λ < λ1(intΩ0) ≤ +∞.

Then any (PS) sequence, that is, a sequence satisfying
(J1) Jλ[un] ≤ C,
(J2)

∣∣J ′λ[un]ψ
∣∣ ≤ εn ‖ψ‖, where εn → 0 as n→ +∞

is a bounded sequence.
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Proof. 1. Let {un}n∈N be a (PS) sequence in H1
0 (Ω) and assume by

contradiction that ‖un‖ → +∞. Let us first prove the following claim:

Claim. Let v ∈ H1
0 (Ω) be the weak limit of vn = un

‖un‖ and assume that
vn → v, strongly in L2∗−1(Ω) and a.e. Then v = 0 a.e. in Ω.

Assume that v 6≡ 0 and denote γn = ‖un‖. Let ωn := {x ∈ Ω :
v+
n (x) > 1}, then for any ψ ∈ C1

0(Ω),∣∣∣∣ ln(e+ γn)α

γ2∗−1
n

(u+
n (x))2∗−1

[ln(e+ γn v+
n (x))]α

|ψ|
∣∣∣∣ ≤ |v+

n (x)|2∗−1‖ψ‖∞, ∀x ∈ ωn.

Let x ∈ Ω \ ωn, using the estimates (A.1),∣∣∣∣ ln(e+ γn)α

γ2∗−1
n

(u+
n )2∗−1

[ln(e+ γn v+
n )]α
|ψ|
∣∣∣∣ ≤ (|v+

n |2
∗−2
)
‖ψ‖∞ ≤ ‖ψ‖∞

Besides, by the reverse of the Lebesgue dominated convergence the-
orem, see for instance [2, Theorem 4.9, p. 94] , there exists hi ∈ L1(Ω),
1 ≤ i ≤ 3 such that, up to a subsequence,

|v+
n |2

∗−1 ≤ h1, |v+
n |p−1 ≤ h2|v+

n |2
∗−2 ≤ h3, , a.e. x ∈ Ω,

for all n ∈ N, and therefore∣∣∣∣ ln(e+ γn)α

γ2∗−1
n

f(u+
n )ψ

∣∣∣∣ ≤ C (h1 + h2 + h3 + 1)) ‖ψ‖∞ ∈ L1(Ω).

By Lebesgue dominated convergent theorem we have

ln(e+ γn)α

γ2∗−1
n

a(·)f(u+
n )ψ → a(·)(v+)2∗−1ψ strongly in L1(Ω).

We have used here that if v+(x) 6= 0, then

lim
n→+∞

ln(e+ γn)

ln(e+ γn v+
n (x))

= 1,

and if v+(x) = 0, then

lim
n→+∞

(
ln(e+ γn)

ln(e+ γn v+
n (x))

)α
|v+
n (x)|2∗−1 ≤ lim

n→+∞
|v+
n (x)|2∗−2 = 0.

On the other hand

ln(e+ γn)α

γ2∗−1
n

∫
Ω

∇un · ∇ψ dx→ 0.
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Hence, using (J2) for an arbitrary test function ψ, multiplying by
ln(e+γn)α

γ2∗−1
n

and passing to the limit we find∫
Ω

a(x)(v+)2∗−1ψ dx = 0 ∀ψ ∈ C1
0(Ω).

In particular v+ = 0 a.e. in Ω \ Ω0.

Assume that intΩ0 6= ∅, and that λ < λ1(intΩ0). Thus, for any
ψ ∈ C1

0(intΩ0) we have from (J2)∫
int Ω0

∇un · ∇ψ dx− λ
∫

int Ω0

u+
nψ dx = o(1).

Dividing by ‖un‖ and passing to the limit we have∫
int Ω0

∇v · ∇ψ dx = λ

∫
int Ω0

v+ψ dx.

From the Maximum Principle, v ≥ 0 in intΩ0. Since λ < λ1(intΩ0)
then it must be v+ ≡ 0 in intΩ0. Hence v+ ≡ 0 in Ω.

On the other hand, taking u−n as a test function in the condition (J2),∣∣∣∣−∫
Ω

|∇u−n |2dx−
∫

Ω

a(x)f(u+
n )u−n dx

∣∣∣∣ =

∫
Ω

|∇u−n |2dx ≤ εn‖u−n ‖

so ‖u−n ‖ → 0 and then v− ≡ 0, and we conclude the proof of the claim.

2. In order to achieve a contradiction, we use a Hölder inequality,
and properties on convergence into an Orlicz space, cf. Appendix B.

To this end, the analysis of Lemma A.2 give us the existence of
α∗ > 0 such that the function s→ s2

∗−1

[ln(e+s)]α
is increasing along [0,+∞[

if α ≤ α∗. In this case we will denote

(3.2) m(s) =
s2∗−1

[ln(e+ s)]α

If α > α∗ the function s → s2
∗−1

[ln(e+s)]α
possesses a local maximum s1 in

[0,+∞[. Let us denote by s1 the unique solution s > s1 such that

s2∗−1
1

[ln(e+ s1)]α
=

s2∗−1

[ln(e+ s)]α

and define the non-decreasing function

(3.3) m(s) :=


s2
∗−1

[ln(e+s)]α
if s 6∈ [s1, s1],

s2
∗−1

1

[ln(e+s1)]α
if s ∈ [s1, s1].
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It follows that

(3.4) s→M(s) =

∫ s

0

m(t) dt is a N − function in [0,+∞[.

By using

lim
s→+∞

ln(e+ s)

ln(e+ 2s)
= 1 and lim

s→0

ln(e+ s)

ln(e+ 2s)
= 1,

we get that

lim
s→+∞

m(2s)

m(s)
< +∞ and lim

s→0+

m(2s)

m(s)
< +∞,

which implies that there exists K > 0 such that m(2s) ≤ Km(s) for
all s ≥ 0 and consequently M satisfies the ∆2-condition (B.1).

Since vn ⇀ 0 in H1
0 (Ω) and strongly in L2(Ω), it follows from (J2)

applied to ψ = un that

(3.5) lim
n→∞

∫
Ω

a(x)
f(u+

n )un
‖un‖2

dx = lim
n→∞

∫
Ω

a(x)
f(u+

n )

‖un‖
v+
n dx = 1.

Since the Hölder inequality into Orlicz spaces, see Proposition B.11.(ii),

(3.6)
∫

Ω

∣∣∣∣a(x)
f(u+

n )

‖un‖
v+
n

∣∣∣∣ dx ≤ ‖a‖∞‖un‖ ‖f(u+
n )‖M∗ ‖v+

n ‖M

By Theorem B.3 and Theorem B.12 we have

(3.7) ‖vn − v‖M → 0.

Moreover, since there exists C > 0 such that m(s) ≤ Cs2∗−1 and
M(s) ≤ Cs2∗ for all s ≥ 0, and the sequence {un}n∈N ⊂ H1

0 (Ω), then,
for each n ∈ N, there exists a Cn such that

|unm(un)| ≤ Cn, |M(|un|)| ≤ Cn.

By using definition B.8 ofM∗ and identities of Proposition B.9 we have

M∗(|m(un)|
)

= |unm(un)| −M(|un|)
then, for each n ∈ N, ∫

Ω

M∗(|m(un)|
)
dx ≤ 2Cn.

Observe that f(s) ≤ C(1+m(s)), that M∗(f(s)
)
≤M∗(C(1+m(s))

)
,

see Proposition B.11.(iii), and by convexity of M∗, that

‖f(u+
n )‖M∗ ≤

∫
Ω

M∗(C(1 +m(u+
n )
)
dx+ 1 ≤ C ′n,



10 MABEL CUESTA AND ROSA PARDO

see Proposition B.11.(i), and the r.h.s. is bounded for each n. Con-
sequently, a(x)f(u+

n )
‖un‖ ∈ LM∗(Ω), which is the dual of LM(Ω) (see [15],

Theorem 14.2).
On the other hand, from J2, for all ψ ∈ C∞c (Ω),

(3.8)∣∣∣∣∫
Ω

∇vn∇ψ dx− λn
∫

Ω

vnψ dx−
∫

Ω

a(x)
f(u+

n )

‖un‖
ψ dx

∣∣∣∣ ≤ εn
‖un‖

‖ψ‖.

Taking the limit, and since C∞c (Ω) is dense in LM(Ω) (see [12]),

(3.9) lim
n→∞

∫
Ω

a(x)
f(u+

n )

‖un‖
ψ dx = 0, for all ψ ∈ LM(Ω).

Moreover, since (3.7), vn → v = 0 in LM(Ω). Hence [2, Proposition
3.13 (iv)], and (3.9) imply

lim
n→∞

∫
Ω

a(x)
f(u+

n )

‖un‖
vn dx = 0,

which contradicts (3.5), ending the proof. �

Theorem 3.2. Assume the hypothesis of Proposition 3.1 and let {un}n∈N
be a (PS) sequence in H1

0 (Ω).
Then, there exists a subsequence, denoted by {un}n∈N, such that

un → u in H1
0 (Ω).

Proof. From Proposition 3.1 we know that the sequence is bounded.
Consequently, there exists a subsequence, denoted by {un}n∈N, and
some u ∈ H1

0 (Ω) such that

un ⇀ u weakly in H1
0 (Ω),(3.10) ∫

Ω

a(x)g(un)|un − u| dx→ 0,(3.11)

un → u a.e.(3.12)

By testing (J2) against ψ = un− u and using (3.10), and (3.11) we get

‖un − u‖2 =

∫
Ω

∇un · ∇(un − u) dx+ o(1)

≤ ‖a‖∞
∫

Ω

|un|2
∗−1

[ln(e+ |un|)]α
|un − u| dx+ o(1).

Claim. ∫
Ω

|un|2
∗−1

[ln(e+ |un|)]α
|un − u|dx = o(1),
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In order to prove this claim, we use as in the above proposition, a
Hölder inequality and a compact embedding into an Orlicz space, c.f.
Appendix B.

By Theorem B.3 and Theorem B.12 we have

(3.13) ‖un − u‖M → 0,

where m, andM are defined by (3.2)-(3.4), as in the above proposition.
On the other hand, since there exists C > 0 such that m(s) ≤ Cs2∗−1

and M(s) ≤ Cs2∗ for all s ≥ 0, and the sequence {un}n∈N is bounded
in H1

0 (Ω), then

|unm(un)| ≤ C, |M(|un|)| ≤ C for all n ∈ N

By using definition B.8 ofM∗ and identities of Proposition B.9 we have

M∗(|m(un)|
)

= |unm(un)| −M(|un|)

then ∫
Ω

M∗(|m(un)|
)
dx ≤ C

for all n ∈ N. Finally, by inequality (B.5) of Proposition B.12 we get

sup
{
‖m(|un|)‖M∗ , n ∈ N

}
≤ C + 1.

Now, using Holder’s inequality (B.6) and that s2
∗−1

[ln(e+s)]α
≤ m(s) for all

s ≥ 0, we get∫
Ω

|un|2
∗−1

[ln(e+ |un|)]α
|un−u|dx ≤ ‖un−u‖M ‖m(un)‖M∗ ≤ (C+1)‖un−u‖M

and it follows from (3.13) that ‖un − u‖ → 0. �

3.2. An existence result for λ < λ1. The next Theorem provides a
solution to (1.1) for λ < λ1 based on the Mountain Pass Theorem.

Theorem 3.3. Assume that Ω ⊂ RN is a bounded domain with C2

boundary. Assume that the nonlinearity f defined by (1.2) satisfies
(H), ant that the weight a ∈ C1(Ω). Then, the boundary value problem
(1.1)λ has at least one classical positive solution for any λ < λ1.

Proof. We verify the hypothesis of the Mountain Pass Theorem, see [13,
Theorem 2, §8.5]. Observe that the derivative of the functional J ′λ :
H1

0 (Ω)→ H1
0 (Ω) is Lipschitz continuous on bounded sets ofH1

0 (Ω); also
the (PS) condition is satisfied, see Proposition 3.1. Clearly Jλ[0] = 0.
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1. Let now u ∈ H1
0 (Ω) with ‖u‖ = r, for r > 0 to be selected below.

Then,

(3.14) Jλ[u] =
r2

2
− λ

2

∫
Ω

(u+)2 dx−
∫

Ω

a(x)F (u+) dx.

From hypothesis (H) we have∣∣∣∣∫
Ω

a(x)G(u+) dx

∣∣∣∣ ≤ C

∫
Ω

(
|u|p + |u|q

)
dx ≤ C (rp + rq) .

where G(s) :=
∫ s

0
g(t) dt. Now, definition (1.2) implies that∣∣∣∣∫

Ω

a(x)F (u+) dx

∣∣∣∣ ≤ C
(
rp + rq + r2∗

)
.

In view of (3.14), and thanks to the Poincaré inequality we get

Jλ[u] ≥ 1

2

(
1− |λ|

λ1

)
r2 − C

(
rp + rq + r2∗

)
≥ C1r

2,

taking |λ| < λ1, r > 0 small enough, and using that p, q, 2∗ > 2.

2. Now, fix some element 0 ≤ u0 ∈ H1
0 (Ω), u0 > 0 in Ω+, u0 ≡ 0 in

Ω−. Let v = tu0 for a certain t = t0 > 0 to be selected a posteriori.
Since

(3.15) f(tu0) = |t|2∗−2t f(u0)

(
ln(e+ |u0|)
ln(e+ |tu0|)

)α
+ g(tu0),

then f(tu0)/t→ +∞ as t→ +∞ in Ω+.
From definition, and integrating by parts,

F (s) =

∫ s

0

(
t2
∗−1

ln(e+ t)α
+ g(t)

)
dt

=
1

2∗
sh(s) +G(s) +

α

2∗

∫ s

0

(
1

ln(e+ t)

)α+1
t2
∗

e+ t
dt.

It can be easily seen that lims→+∞
G(s)
sf(s)

= 0.

Therefore, using l’Hôpital’s rule we can write

lim
s→+∞

F (s)

sf(s)
=

1

2∗
∈
(

0,
1

2

)
,(3.16)

hence

lim
t→+∞

F (tu0)

tu0f(tu0)
=

1

2∗
∈
(

0,
1

2

)
in Ω+.(3.17)



POSITIVE SOLUTIONS FOR SLIGHTY SUBCRITICAL ELLIPTIC PROBLEMS.13

Let C0 ≥ 0 be such that F (s) + 1
2
C0s

2 ≥ 0 for all s ≥ 0 (see (1.7)),
and let

(3.18) Ω̃+
δ := {x ∈ Ω+ : a(x) = a+(x) > δ}.

By definition, u0 ≡ 0 in Ω−, so, introducing ±1
2
C0(tu0)2, splitting the

integral, and using (3.17)-(3.18) we obtain

−
∫

Ω

a(x)F (tu0) dx = −
∫

Ω+

a+(x)F (tu0) dx

≤ C0t
2

2

∫
Ω+

a+(x)u2
0 dx−

∫
Ω̃+
δ

a+(x)

[
1

2
C0(tu0)2 + F (tu0)

]
dx

≤ C +
C0t

2

2

∫
Ω+

a+(x)u2
0 dx−

δt2

2

∫
Ω̃+
δ

[
C0u

2
0 +

u0f(tu0)

2∗t

]
dx.

Hence, there exists a positive constant C > 0 such that

Jλ[tu0] =
t2

2
‖u0‖2 − t2λ

2
‖u0‖2

L2(Ω) −
∫

Ω+

a+(x)F (tu0)

≤ C(1 + t2)− δ t2

2

∫
Ω̃+
δ

[
C0(u0)2 +

u0f(tu0)

2∗t

]
dx < 0

for t = t0 > 0 big enough.

Step 3. We have at last checked that all the hypothesis of the Moun-
tain Pass Theorem are accomplished. Let

Γ := {g ∈ C
(
[0, 1];H1

0 (Ω)
)

: g(0) = 0, g(1) = t0u0},

then, there exists c ≥ C1 r
2 > 0 such that

c := inf
g∈Γ

max
0≤t≤1

Jλ[g(t)]

is a critical value of Jλ, that is, the set Kc := {v ∈ H1
0 (Ω) : Jλ[v] =

c, J ′λ[v] = 0} 6= ∅. Thus there exists u ∈ H1
0 (Ω), u ≥ 0, u 6= 0 such

that for each ψ ∈ H1
0 (Ω), we have

(3.19)
∫

Ω

∇u · ∇ψ dx =

∫
Ω

[
λu+ + a(x)f(u+)

]
ψ dx.

and thereby u is a nontrivial weak solution to (3.19). By Lemma 2.1,
u is a classical solution, and by (1.8), u > 0 in Ω. �

4. A bifurcation result for λ > λ1

Next Proposition uses Crandall - Rabinowitz’s local bifurcation the-
ory, see [10], and Rabinowitz’s global bifurcation theory, see [19].
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Proposition 4.1. Let us define

Λ := sup{λ > 0 : (1.1) admits a positive solution}.

If (1.5) holds then,

λ1 < Λ < min
{
λ1

(
int (Ω0)

)
, λ1

(
int
(
Ω+ ∪ Ω0

))
+ C0 sup a+

}
where C0 > 0 is such that f(s) + C0s ≥ 0 for all s ≥ 0, (see definition
(1.6)).

Moreover, there exists an unbounded continuum (a closed and con-
nected set) C of classical positive solutions to (1.1) emanating from the
trivial solution set at the bifurcation point (λ, u) = (λ1, 0).

Proof. Proposition 2.2 proves the upper bounds for Λ. Next we con-
centrate our attention in proving that Λ > λ1. Choosing λ as the
bifurcation parameter, we check that the conditions of Crandall - Ra-
binowitz’s Theorem [10] are satisfied. For r > N , we define the set
W 2,r

+ := {u ∈ W 2,r(Ω) : u > 0 in Ω}, and consider W 2,r
+ (Ω) ∩W 1,r

0 (Ω)
endowed with the topology of W 2,r(Ω). If r > N , we have that
W 2,r

+ (Ω) ∩ W 1,r
0 (Ω) ↪→ C1,µ

0 (Ω) for µ = 1 − N
r
∈ (0, 1). Moreover,

from Hopf’s lemma, we know that if ũ is a positive solution to (1.1)
then ũ lies in the interior of W 2,r

+ (Ω) ∩W 1,r
0 (Ω).

We consider the map F : R×W 2,r
+ (Ω)∩W 1,r

0 (Ω)→ Lr(Ω) for r > N ,

F : (λ, u)→ −∆u− λu− a(x)f(u)

The map F is a continuously differentiable map. Since hypothesis (i),
g(0) = 0, and so a(x)F (0) = 0, F (λ, 0) = 0 for all λ ∈ R, and since
Fu(x, 0) = 0,

DuF (λ1, 0)w := −∆w − λ1w,

Dλ,uF (λ1, 0)w := −w.

Observe that

N
(
DuF (λ1, 0)

)
= span[ϕ1], codimR

(
DuF (λ1, 0)

)
= 1,

Dλ,uF (λ1, 0)ϕ1 = −ϕ1 6∈ R
(
DuF (λ1, 0)

)
,

whereN(·) is the kernel, andR(·) denotes the range of a linear operator.
Hence, the hypotheses of Crandall-Rabinowitz theorem are satisfied

and (λ1, 0) is a bifurcation point. Thus, decomposing

C1,µ
0 (Ω) = span[ϕ1]⊕ Z,

where Z = span[ϕ1]⊥, there exists a neighbourhood U of (λ1, 0) in R×
C1,µ

0 (Ω), and continuous functions λ(s), w̃(s), s ∈ (−ε, ε), λ : (−ε, ε)→
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R, w̃ : (−ε, ε)→ Z such that λ(0) = λ1, w̃(0) = 0, with
∫

Ω
w̃ϕ1 dx = 0,

and the only nontrivial solutions to (1.1) in U , are

(4.1)
{(
λ(s), sϕ1 + s w̃(s)

)
: s ∈ (−ε, ε)

}
.

Set u = u(s) = sϕ1 + s w̃(s). Note that by continuity w̃(s) → 0 as
s → 0, which guarantees that u(s) > 0 in Ω for all s ∈ (0, ε) small
enough.

Next, we show that λ(s) > λ1 for all s small enough. Since (3.15),
and hypothesis (H)0 on f , note that a(x)f(su)

sp−1up−1 → L1a(x) as s → 0. In
fact, as w̃(s)→ 0 uniformly as s→ 0, hypothesis (H)0 yields

a(x)f
(
sϕ1 + s w̃(s)

)
sp−1

(
ϕ1 + w̃(s)

)p−1 −→ L1a(x) uniformly in Ω as s→ 0.

Hence, multiplying and dividing by
(
ϕ1 + w̃(s)

)p−1, we deduce

1

sp−1

∫
Ω

a(x)f
(
u(s)

)
ϕ1 →

s→0
L1

∫
Ω

a(x)ϕp1.

Now we prove that λ(s) > λ1 arguing by contradiction. Assume that
there is a sequence (λn, un) =

(
λ(sn), u(sn)

)
of bifurcated solutions to

(1.1) in U , with λ(sn) ≤ λ1. Multiplying (1.1)λn by ϕ1 and integrating
by parts

0 ≤
(
λ1 − λ(sn)

)
sp−1
n

∫
Ω

u(sn)ϕ1 =
1

sp−1
n

∫
Ω

a(x)f
(
u(sn)

)
ϕ1 → L1

∫
Ω

a(x)ϕp1 < 0

which yields a contradiction, and consequently, Λ > λ1. Finally, Ra-
binowitz’s global bifurcation Theorem [19] states that in fact, the set
C of positive solutions to (1.1) emanating from (λ1, 0) is a continuum
(a closed and connected set) which is either unbounded, or contains
another bifurcation point, or contains a pair of points (λ, u), (λ,−u)
whith u 6= 0. Since (1.8), any non-negative non-trivial solution is
strictly positive, moreover (λ1, 0) is the only bifurcation point to pos-
itive solutions, so C can not reach another bifurcation point. Since
(1.3), neither C contains a pair of points (λ, u), (λ,−u) whith u 6= 0,
which state that C is unbounded, ending the proof. �

5. Proof of Theorem 1.1

First we prove an auxiliary result.

Proposition 5.1. For each λ ∈ (λ1,Λ), the following holds:
(i) Problem (1.1)λ admits a positive solution

uλ = inf
{
u(x) : u > 0 solving (1.1)λ

}
,
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in other words uλ is minimal.
(ii) Moreover, the map λ → uλ is strictly monotone increasing,

that is, if λ < µ < Λ, then uλ(x) < uµ(x) for all x ∈ Ω, and
∂uλ
∂ν

(x) > ∂uµ
∂ν

(x) for all x ∈ ∂Ω.
(iii) Furthermore, uλ is a local minimum of the functional Jλ.

Proof. (i.a) Step 1. Existence of positive solutions for any λ ∈ (λ1,Λ).

Let λ ∈ (λ1,Λ) be fixed. By definition of Λ, there exists a λ0 ∈ (λ,Λ)
such that the problem (1.1)λ0 admits a positive solution u0. It is easy
to verify that u0 > 0 is a supersolution to (1.1)λ. Indeed, for any
ψ ∈ H1

0 (Ω) with ψ ≥ 0 in Ω∫
Ω

∇u0∇ψ dx−λ
∫

Ω

u0ψ dx−
∫

Ω

a(x)f(u0)ψ dx = (λ0−λ)

∫
Ω

u0ψ dx ≥ 0.

Moreover, for every δ > 0 satisfying

(5.1) 0 < δ <

(
λ− λ1

2L1 ‖a−‖∞

) 1
p−2 1

‖ϕ1‖∞
the function u = δϕ1 is a subsolution for (1.1)λ whenever λ > λ1. Let
δ > 0 satisfying (5.1) and such that g(s) ≥ 0 for any s ∈ [0, δ‖ϕ1‖L∞(Ω)].
For any ψ ∈ H1

0 (Ω), ψ > 0 with in Ω we deduce

δ

∫
Ω

∇ϕ1∇ψ dx− λδ
∫

Ω

ϕ1ψ dx−
∫

Ω

a(x)f(δϕ1)ψ dx

= −(λ− λ1)δ

∫
Ω

ϕ1ψ dx−
∫

Ω

a(x)f(δϕ1)ψ dx

= −(λ− λ1)δ

∫
Ω

ϕ1ψ dx

−
∫

Ω

a(x)

[
(δϕ1)2∗−1

[ln(e+ δϕ1)]α
+ g(δϕ1)

]
ψ dx

≤ −(λ− λ1)δ

∫
Ω

ϕ1ψ dx

+ ‖a−‖∞
∫

Ω

[
h(δϕ1) + g(δϕ1)

]
ψ dx < 0.

This allow us to take u = δϕ1 as a subsolution for (1.1)λ with u < u0.
The sub- and supersolution method now guarantees a positive solution
u to (1.1)λ, with u ≤ u ≤ u0.

(i.b) Step 2. Existence of a minimal positive solution uλ for any
λ ∈ (λ1,Λ).
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To show that there is in fact a minimal solution, for each x ∈ Ω we
define

uλ(x) := inf
{
u(x) : u > 0 solving (1.1)λ

}
.

Firstly, we claim that uλ ≥ 0, uλ 6≡ 0. Assume by contradiction that
uλ ≡ 0. This would yield a sequence un of positive solutions to (1.1)λ
such that ||un||C(Ω) → 0 as n → ∞, or in other words, (λ, 0) is a
bifurcation point from the trivial solution set to positive solutions. Set
vn := un

||un||C(Ω)
. Observe that vn is a weak solution to the problem

(5.2) −∆vn = λvn + a(x)f(un)/||un||C(Ω) in Ω ; vn = 0 on ∂Ω .

It follows from (H)0 that a(x)f(un)
||un||C(Ω)

→ 0 in C(Ω) as n→∞. Therefore,

the right-hand side of (5.2) is bounded in C(Ω). Hence, by the elliptic
regularity, vn ∈ W 2,r(Ω) for any r > 1, in particular for r > N . Then,
the Sobolev embedding theorem implies that ||vn||C1,α(Ω) is bounded by
a constant C that is independent of n. Then, the compact embedding
of C1,µ(Ω) into C1,β(Ω) for 0 < β < µ yields, up to a subsequence,
vn → Φ ≥ 0 in C1,β(Ω). Since ||vn||C(Ω) = 1, we have that ||Φ||C(Ω) = 1.
Hence, Φ ≥ 0, Φ 6≡ 0.

Using the weak formulation of equation (5.2), passing to the limit,
and taking into account that λ is fixed and vn → Φ, we obtain that
Φ ≥ 0, Φ 6≡ 0, is a weak solution to the equation

−∆Φ = λΦ in Ω , Φ = 0 on ∂Ω.

Then, by the maximum principle it follows that Φ = ϕ1 > 0, the
first eigenfunction, and λ = λ1 is its corresponding eigenvalue, which
contradicts that λ > λ1.

Secondly, we show that uλ solves (1.1)λ. We argue on the contrary.
Observe that the minimum of any two positive solutions to (1.1)λ fur-
nishes a supersolution to (1.1)λ. Assume that there are a finite number
of solutions to (1.1)λ, then uλ(x) := min

{
u(x) : u > 0 solves (1.1)λ

}
and uλ is a supersolution. Choosing ε0 small enough so that ε0ϕ1 < uλ,
the sub- supersolution method provides a solution ε0ϕ1 ≤ v ≤ uλ. Since
v is a solution and uλ is not, then v � uλ, contradicting the definition
of uλ, and achieving this part of the proof.

Assume now that there is a sequence un of positive solutions to (1.1)λ
such that, for each x ∈ Ω, inf un(x) = uλ(x) ≥ 0, uλ 6≡ 0. Let u1 :=
min{u1, u2}. Choosing ε1 small enough so that ε1ϕ1 < u1, the sub-
supersolution method provides a solution ε1ϕ1 ≤ v1 ≤ u1. We reason
by induction.
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Let un := min{vn−1, un+1}. Choosing εn small enough so that εnϕ1 <
un, the sub- supersolution method provides a solution εnϕ1 ≤ vn ≤
un ≤ vn−1. With this induction procedure, we build a monotone se-
quence of solutions vn, such that

(5.3) 0 < vn ≤ un ≤ vn−1 ≤ un−1 ≤ · · · ≤ v1.

Since monotonicity and Lemma 2.1, ‖vn‖C(Ω) ≤ ‖v1‖C(Ω), by elliptic
regularity, ‖vn‖C1,µ(Ω) ≤ C for any µ < 1, and by compact embedding
vn → v in C1,β(Ω) for any β < α. Using the weak formulation of
equation (1.1)λ, passing to the limit, and taking into account that λ is
fixed, we obtain that v is a weak solution to the equation (1.1)λ. Hence
v(x) ≥ uλ > 0. Moreover, since (5.3), vn(x) ↓ v(x) pointwise for x ∈ Ω,
so inf vn(x) = v(x). Also, and due to (5.3), un(x) ↓ v(x) pointwise for
x ∈ Ω, and inf un(x) = v(x).

On the other hand, by construction un ≤ un+1, so, for each x ∈ Ω,
v(x) = inf un(x) ≤ inf un(x) = uλ(x). Therefore, and by definition of
uλ, necessarily v = uλ, proving that uλ solves (1.1)λ, and achieving the
proof of step 2.

(ii) The monotonicity of the minimal solutions is concluded from a sub-
supersolution method. Reasoning as in step 1, uµ is a strict supersolu-
tion to (1.1)λ, so w := uµ(x)− uλ(x) ≥ 0, w 6≡ 0. Moreover, w = 0 on
∂Ω, and we can always choose c0 := C0‖a‖∞ > 0 where C0 is defined
by (1.6), so that a−(x)f ′(s) + c0 ≥ 0 and a+(x)f ′(s) + c0 ≥ 0 for all
s ≥ 0, then(

−∆ + a−(x)f ′
(
θuµ + (1− θ)uλ

)
+ c0

)
w = (µ− λ)uµ + λw

+
[
a+(x)f ′

(
θuµ + (1− θ)uλ

)
+ c0

]
w > 0 in Ω,

finally, the Maximum Principle implies that w > 0 in Ω, and ∂w
∂ν

< 0
on ∂Ω, ending the proof of step 3.

(iii) Since [4, Theorem 2] if there exists an ordered pair of L∞ bounded
sub and super-solution u ≤ u to (1.1)λ, and neither u nor u is a solution
to (1.1)λ, then there exist a solution u < u < u to (1.1)λ such that u is
a local minimum of Jλ at H1

0 (Ω).
Reasoning as in (i), u := uµ with µ > λ is a strict super-solution to

(1.1)λ, and u := δϕ1 is a strict sub-solution for δ > 0 small enough,
such that u(x) < u(x) for each x ∈ Ω. This achieves the proof. �
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Proof of Theorem 1.1. Theorem 3.3 provides the existence of positive
solutions for λ < λ1, and Proposition 5.1 provide the existence of min-
imal positive solutions for λ ∈ (λ1,Λ).

(a) Step 1. Existence of a second positive solution for λ ∈ (λ1,Λ).

Fix an arbitrary λ ∈ (λ1,Λ), and let uλ be the minimal solution to
(1.1)λ given by Proposition 5.1, minimizing Jλ. A second solution
follows seeking a solution through variational arguments [14, Theorem
5.10] and the Mountain Pass procedure shown below.

First, reasoning as in Proposition 5.1(iii), we get a local minimum
ũλ > 0 of Jλ. If ũλ 6= uλ, then ũλ is the second positive solution, ending
the proof. Assume that ũλ = uλ.

Now we reason as in [14, Theorem 5.10] on the nature of local min-
ima. Thus, either

(i) there exists ε0 > 0, such that inf
{
Jλ(u) : ‖u− ũλ‖ = ε0

}
> Jλ(ũλ),

in other words, ũλ is a strict local minimum, or

(ii) for each ε > 0, there exists uε ∈ H1
0 (Ω) such that Jλ has a local

minimum at a point uε with ‖uε − ũλ‖ = ε and Jλ(uε) = Jλ(ũλ).

Let us assume that (i) holds, since otherwise case (ii) implies the
existence of a second solution.

Consider now the functional Iλ : H1
0 (Ω)→ R given by Iλ[v] = Jλ[uλ+

v]− Jλ[uλ], more specifically

Iλ[v] :=
1

2

∫
Ω

|∇v|2 dx− λ

2

∫
Ω

(v+)2 dx−
∫

Ω

G̃λ(x, v
+) dx.

where

G̃λ(x, s) := a(x)
[
F (uλ(x) + s)− F (uλ(x))− f(uλ(x))s

]
= a(x)

[
1

2
f ′(uλ(x))s2 + o(s2)

]
.

Obviously Iλ[v+] ≤ Iλ[v], and observe that I ′λ[v] = 0 ⇐⇒ J ′λ[uλ+v] =
0.

Fix now some element 0 ≤ v0 ∈ H1
0 (Ω)∩L∞(Ω), v0 > 0 in Ω+, v0 ≡ 0

in Ω−. Let v = tv0 for a certain t = t0 > 0 to be selected a posteriori,
and evaluate

Iλ[tv0] =
1

2
t2
(
‖∇v0‖2

L2(Ω) − λ ‖v0‖2
L2(Ω)

)
−
∫

Ω

G̃λ(x, tv0) dx.
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Reasoning as in the proof of Theorem 3.3 for large positive t, since
F (t)/t2 →∞ as t→∞, and using also (3.1) we obtain that

Iλ[tv0] ≤ C(1 + t+ t2)−
∫

Ω+

a+(x)
[
F (uλ + tv0) +

1

2
C0(uλ + tv0)2

]
≤ C(1 + t+ t2)− δ

∫
Ω̃+
δ

[
F (uλ + tv0) +

1

2
C0(uλ + tv0)2

]
dx,

so
Iλ[tv0] < 0

for t = t0 big enough, and where Ω̃+
δ is defined by (3.18). Thus, the

Mountain Pass Theorem implies that if

Γ := {g ∈ C
(
[0, 1];H1

0 (Ω)
)

: g(0) = 0, Iλ[g(1)] < 0},

then, there exists c > 0 such that

c := inf
g∈Γ

max
0≤t≤1

Iλ[g(t)]

is a critical value of Iλ, and thereby Kc := {v ∈ H1
0 (Ω) : Iλ[v] =

c, I ′λ[v] = 0} is non empty.
Since for any g ∈ Γ we have Iλ[g+(t)] ≤ Iλ[g(t)] for all t ∈ [0, 1], it

follows that g+ ∈ Γ, and we derive the existence of a sequence vn such
that

Iλ[vn]→ c, ‖I ′λ[vn]‖ → 0, vn ≥ 0.

On the other hand, wn := uλ + vn is a (PS) sequence for the original
functional Jλ. Since Theorem 3.2, if λ < λ1(int Ω0), vn → vλ en H1

0 (Ω),
so I ′λ[v] = 0 and Iλ[v] = c > 0, hence vλ ≥ 0 is a nontrivial critical
point of Iλ. Consequently, wλ := uλ + vλ is a positive critical point of
Jλ, such that, for each ψ ∈ H1

0 (Ω), we have∫
Ω

∇wλ · ∇ψ dx =

∫
Ω

(
λwλ + a(x)f(wλ)

)
ψ dx,

and thereby wλ := uλ + vλ ≥ uλ, wλ 6= uλ is a second positive solution
to (1.1)λ.

(b) Step 2. Existence of a classical positive solution for λ = Λ.

We prove the existence of a solution for λ = Λ. For each λ ∈ (λ1,Λ),
problem (1.1) admits a minimal positive weak solution uλ and λ→ uλ
is increasing, see Proposition 5.1. Taking the monotone pointwise limit,
let us define

uΛ(x) := lim
λ↑Λ

uλ(x).
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We next see that ‖uΛ‖ < +∞, reasoning on the contrary. Assume that
there exists a sequence of solutions un := uλn such that ‖uλn‖ → +∞
as λn → Λ. Set vn := un/‖un‖, then there exists a subsequence, again
denoted by vn such that vn ⇀ v in H1

0 (Ω), and vn → v in Lp(Ω) for
any p < 2∗ and a.e. Arguing as in the claim of Proposition 3.1, v ≡ 0.
Moreover

(5.4) lim
n→∞

∫
Ω

a(x)
f(un)

‖un‖
vn dx = 1.

On the other hand, from the weak formulation, for all ψ ∈ C∞c (Ω),

(5.5)
∫

Ω

∇vn∇ψ dx = λn

∫
Ω

vnψ dx+

∫
Ω

a(x)
f(un)

‖un‖
ψ dx.

Taking the limit, and since C∞c (Ω) is dense in L2(Ω)

(5.6) lim
n→∞

∫
Ω

a(x)
f(un)

‖un‖
ψ dx = 0, for all ψ ∈ L2(Ω).

Since Lemma 2.1, u ∈ C2(Ω) ∩ C1,µ(Ω) and so a(x)f(un)
‖un‖ ∈ L2(Ω).

Moreover vn → v = 0 in L2(Ω). Hence [2, Proposition 3.13 (iv)], and
(5.6) imply

lim
n→∞

∫
Ω

a(x)
f(un)

‖un‖
vn dx = 0,

which contradicts (5.4) and yields ‖uΛ‖ < +∞.
By Sobolev embedding and the Lebesgue dominated convergence

theorem, un → uΛ in L2∗(Ω).
Now, by substituting ψ = un in (5.5), using Hölder inequality and

Sobolev embeddings we obtain[
‖un‖ ≤ Λ‖vn‖L2(Ω)‖un‖+ C, with ‖vn‖L2(Ω) → 0

]
⇒ ‖un‖ ≤ C.

By compactness, for a subsequence again denoted by un, un ⇀ u∗ in
H1

0 (Ω), un → u∗ in Lp(Ω) for any p < 2∗ and a.e. By uniqueness of the
limit, uΛ = u∗. Finally, by taking limits in the weak formulation of un
as λn → Λ, we get∫

Ω

∇uΛ∇ψ = Λ

∫
Ω

uΛψ +

∫
Ω

a(x)f(uΛ)ψ .

Hence uΛ is a positive weak solution to (1.1)Λ. Lemma 2.1 yields that
uΛ ∈ C2(Ω) ∩ C1,µ(Ω) is a classical solution.

(c) Step 3. Existence of a classical positive solution for λ ≤ λ1.

The existence of a classical positive solution for λ < λ1 is done in
Theorem 3.3. Let’s look for a solution when λ = λ1.
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Since step 1, for any λ ∈ (λ1,Λ) there exists a second positive solu-
tion to (1.1)λ. Let’s denote it by ũλ 6= uλ. Now, define the pointwise
limit

(5.7) ũλ1(x) := lim sup
λ→λ1

ũλ(x).

Reasoning as in step 2, ‖ũλ1‖ < +∞ and ũλ1 ∈ C2(Ω) ∩ C1,µ(Ω) is a
classical solution to (1.1)λ1 .

Moreover, ũλ1 > 0. Assume on the contrary that ũλ1 = 0. By the
Crandall-Rabinowitz’s Theorem [10], the only nontrivial solutions to
(1.1) in a neighborhood of the bifurcation point (λ1, 0) are given by
(4.1)). Since Proposition 5.1, those are the minimal solutions uλ, and
due to ũλ 6= uλ, ũλ are not in a neighbourhood of (λ1, 0), contradicting
the definition of ũλ1(x), (5.7)

Hence, ũλ1 ≥ 0, and reasoning as in (1.8), the Maximum Principle
implies that ũλ1 > 0. �

Appendix A. Some estimates

First, we prove an useful estimate of ln(e+s)
ln(e+as)

.

Lemma A.1. Let 0 < a ≤ 1 be fixed. Then for all s ≥ 0,

(A.1)
ln(e+ s)

ln(e+ as)
≤ ln

(e
a

)
≤ 1

a
.

Proof. Denote `(s) = ln(e+s)
ln(e+as)

for all s ≥ 0. Then 1 ≤ `(s) ≤ `(s0)

where s0 > 0 is the unique value where `′(s) = 0. When computing s0

we find

`′(s0) = 0⇐⇒ (e+ as0) ln(e+ as0)− a(e+ s0) ln(e+ s0) = 0

and therefore

max ` = `(s0) =
ln(e+ s0)

ln(e+ as0)
=

e+ as0

a(e+ s0)
.

Notice that we have `(s0) ≤ 1
a
. In order to find a better upper bound

of ln( e+as0
e+s0

) let us denote for all s ≥ 0

θ(s) = (e+ as) ln(e+ as)− a(e+ s) ln(e+ s).

Then, there exists χ ∈ (0, s0) such that

0− e(1− a) = θ(s0)− θ(0) = θ′(χ)s0 =⇒ e(1− a)

s0

= −θ′(χ).

Then
−θ′(s) = a ln

(
e+ s

e+ as

)
≤ a ln

(
1

a

)
,



POSITIVE SOLUTIONS FOR SLIGHTY SUBCRITICAL ELLIPTIC PROBLEMS.23

and
e(1− a)

s0

≤ a ln

(
1

a

)
=⇒ s0 ≥

e(1− a)

a ln
(

1
a

) .
Since e+as

a(e+s)
is decreasing,

max
s≥0

`(s) = `(s0) =
e+ as0

a(e+ s0)
≤

e+ e(1−a)

ln( 1
a

)

ae+ e(1−a)

ln( 1
a

)

=
ln(1/a) + 1− a
a ln(1/a) + 1− a

≤ ln(1/a) + 1,

and the first inequality of (A.1) is achieved. The second one is obvious.
�

Next lemma is about the variations of h(s) = s2
∗−1

[ln(e+s)]α
for s ≥ 0.

Lemma A.2. There exists α∗ > 2(2∗− 1) such that h is an increasing
function on ]0,+∞[ if and only if α ≤ α∗. Moreover, if α > α∗ there
exists s1 < s2 such that h is increasing in [0,+∞[ \ ]s1, s2[.

Proof. We have

h′(s) =
s2∗−2

[ln(e+ s)]α+1

(
(2∗ − 1) ln(e+ s)− αs

s+ e

)
,

so
h′(s) ≥ 0⇐⇒ ln(e+ s) ≥ α

2∗ − 1

s

s+ e
.

Let us define for s ≥ 0,

θ(s) := ln(e+ s)− α

2∗ − 1

s

s+ e
.

We have: 
θ(0) = 1,
θ(s)→ +∞ as s→ +∞,
θ′(s) =

s+e(1− α
2∗−1)

(e+s)2 .

Hence:

(1) If α
2∗−1

≤ 1 then θ′(s) ≥ 0 for all s ≥ 0 and in particular θ(s) ≥ 0
and therefore h′(s) ≥ 0 for all s ≥ 0;

(2) if α
2∗−1

> 1 then

θ′(s0) = 0 for s0 = e

(
α

2∗ − 1
− 1

)
.
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Let us compute θ(s0):

θ(s0) = ln

(
α

2∗ − 1

)
− α

2∗ − 1
+ 2,

and hence:

(i) if θ(s0) ≥ 0 then θ(s) ≥ 0 for all s ≥ 0 and therefore h′(s) ≥ 0 for
all s ≥ 0;

(ii) if θ(s0) < 0 then there exists s1 < s2 such that

θ(s) > 0 ∀s ∈ [0,+∞[ \ ]s1, s2[ =⇒ h′(s) > 0 ∀s ∈ [0,+∞[ \ ]s1, s2[.

Notice that t→ ln t is greater that t→ t− 2 somewhere between some
t1 < 1 and the value t∗ =the unique solution > 2 of the equation

ln t∗ = t∗ − 2.

Finally the statement of the lemma holds for α∗ = t∗(2∗ − 1). �

Appendix B. A compact embedding using Orlicz spaces

For references on Orlicz spaces see [15, 20]. Throughout Ω ⊂ RN is
an bounded open set. We will denote

L(Ω) = {ϕ : Ω→ R : ϕ is Lebesgue measurable}.

Definition B.1. We will say that a function M : [0,+∞[→ [0,+∞[ is
a N-function if and only if
(N1) M is convex, increasing and continuous,

(N2) lim
s→0+

M(s)

s
= 0,

(N3) lim
s→+∞

M(s)

s
= +∞.

The proof of the following property is trivial, we just quoted it for
the sake of completeness.

Proposition B.2. Any N-function M admits a representation of the
form

M(s) =

∫ s

0

m(t)dt

where m : [0,+∞[→ [0,+∞[ is a non-decreasing right-continuous func-
tion satisfying m(0) = 0 and

lim
s→+∞

m(s) = +∞.

Thus, m is the right-derivative of M .
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Our first aim is to prove the following result:

Theorem B.3. Let M : [0,+∞[→ R be a N-function such that

lim
s→+∞

s2∗

M(s)
= +∞.

Assume also that M satisfies the ∆2-condition, that is,

(B.1) ∃K > 0, ∀s ∈ [0,+∞[, M(2s) ≤ KM(s).

Let {un}n∈N in H1
0 (Ω) be a sequence satisfying

(1) supn∈N ‖un‖2∗ <∞,
(2) there exists u ∈ H1

0 (Ω) such that limn→+∞ un(x) = u(x) a.e.
Then there exists a subsequence {unk}k∈N such that

(B.2) lim
k→∞

∫
Ω

M
(
|unk(x)− u(x)|

)
dx = 0.

In order to proof this theorem we need some definitions.

Definition B.4. Let K ⊂ L(Ω). We say that K has equi-absolutely
continuous integrals if and only if ∀ε > 0 there exists h > 0 such
that

∀ϕ ∈ K,∀A ⊂ Ω mesurable , |A| < h =⇒
∫
A

|ϕ(x)| dx < ε.

Lemma B.5. Let M : [0,+∞[→ R be a N-function satisfying the ∆2

condition (B.1). Let {un}n∈N be a sequence of measurable functions
converging a.e. to some function u and such that the set{

M
(
|un|

)
: n ∈ N

}
has equi-absolutely continuous integrals. Then (B.2) holds.

Proof. Let fix ε > 0 and let δ > 0 be such that

∀n ∈ N, ∀A ⊂ Ω mesurable , |A| < δ =⇒
∫
A

M(|un|)dx ≤ ε.

Using Fatou’s lemma we infer that also

∀A ⊂ Ω mesurable , |A| < δ =⇒
∫
A

M(|u|)dx ≤ ε.

Let Ωn = {x ∈ Ω : |un(x) − u(x)| > M−1(ε)}. As a consequence of
Egoroff’s theorem, the sequence (un)n∈N converge in measure to u so
there exists n0 ∈ N such that

|Ωn| < δ.
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Then, using the convexity of M and (B.1) it comes∫
Ω

M
(
|un − u|

)
dx =

∫
Ωn

M
(
|un − u|

)
dx+

∫
Ω\Ωn

M
(
|un − u|

)
dx

≤ 1

2

(∫
Ωn

(M
(
2|un|

)
+M

(
2|u|

)
dx

)
+ |Ω|M

(
M−1(ε)

)
≤ K

2

(∫
Ωn

(
M(|un|) +M(|u|)

)
dx

)
+ |Ω|ε ≤ (K + |Ω|)ε.

�

In order to prove that, for the sequence of our theorem, the set{
M
(
|un|

)
: n ∈ N

}
has equi-absolutely continuous integrals we are going to use the follow-
ing lemma :

Lemma B.6. Let K ⊂ L(Ω) and let Φ : [0,+∞[→ [0,+∞[ be an
increasing function satisfying

(B.3) lim
s→+∞

Φ(s)

s
= +∞.

Suppose that there exists D > 0 such that

(B.4) sup
u∈K

∫
Ω

Φ
(
|u|
)
dx ≤ D.

Then all the functions u ∈ K are integrable and K has equi-absolutely
continuous integrals (Valle Poussin’s theorem).
Moreover, ifM : [0,+∞[→ [0,+∞[ is a continuous increasing function
satisfying

lim
s→+∞

M(s)

s
= +∞ and lim

s→+∞

Φ(s)

M(s)
= +∞,

then the family K1 = {M
(
|u|
)

: u ∈ K} has equi-absolutely continuous
integrals.

Proof. For the Valle Poussin’s theorem see [18] page 159. To prove the
second statement remark that the function Φ̃ = Φ◦M−1 satisfies (B.3).
Here M−1 stand for the right-hand inverse. �

Proof of theorem B.3. Let us take Φ(s) = |s|2∗ . From hypothesis (1) of
the theorem, the set K = {un : n ∈ N} satisfies (B.4) for some D > 0.
Then the conclusion follows from lemma B.5 and Lemma B.6 . �
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Remark B.7. Whenever (B.2) is satisfied we say that the sequence
{unk}k∈N converges in M-mean to u.

One can formulate Theorem B.3 as a compact embedding of H1
0 (Ω)

in some vector space endowed of the Luxembourg norm associate to M
(see [15, 20]). Instead, we are going to use the Orlicz-norm which is
more suitable to our purposes. We will will see later in Theorem B.12
that the convergence in M -mean implies the convergence with respect
to the Orlicz-norm, provided that the ∆2-condition is satisfied.

Definition B.8. Let M be a N-function. The complementary of M
defined for all s ≥ 0 is the function

M∗(s) := max
{
st−M(t) : t ≥ 0

}
.

As before, we give the following trivial result for the sake of com-
pleteness:

Proposition B.9. If m is the right derivative of M then

m∗(s) = sup{t : m(t) ≤ s}
is the right derivative of M∗ and M∗ is a N-function. Furthermore,
for all s ≥ 0 we have

sm(s) = M(s) +M∗(m(s)), sm∗(s) = M(m∗(s)) +M∗(s).

Next, let us introduce the Orlicz norm associated to M :

Definition B.10. Let M be a N-function and let M∗ be its comple-
mentary. Let us denote for any v ∈ L(Ω)

ρ(v,M∗) =

∫
Ω

M∗(|v|) dx
and define the Orlicz norm of any u ∈ L(Ω) by

‖u‖M := sup

{∫
Ω

uv dx : v ∈ L(Ω), ρ(v,M∗) ≤ 1

}
.

‖ · ‖M is a norm in the real vector space

LM(Ω) =
{
u ∈ L(Ω) : ‖u‖M < +∞

}
.

(see [15] for the details). Let us prove the following less trivial proper-
ties:

Proposition B.11.
(i) For all u ∈ L(Ω),

(B.5) ‖u‖M ≤
∫

Ω

M(|u|) dx+ 1.
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(ii) For any u and v in L(Ω) it holds

(B.6)
∣∣∣∣∫

Ω

uv dx

∣∣∣∣ ≤ ‖u‖M ‖v‖M∗ (Holder’s inequality).

(iii) For any u and v in L(Ω) we have ‖u‖M ≤ ‖v‖M if |u| ≤ |v|
a.e.

Proof. (i) This follows from the definition of ‖ · ‖M and the inequality
|uv| ≤M(|u|) +M∗(|v|).
(ii) The divide the proof in 3 steps.
Step 1: For all v ∈ L(Ω),∣∣∣∣∫

Ω

uv dx

∣∣∣∣ ≤ { ‖u‖M if ρ(v,M∗) ≤ 1
ρ(v,M∗)‖u‖M if ρ(v,M∗) > 1

Indeed, the first case follows directly from the definition. If ρ(v,M∗) >
1 then by convexity

M∗
(

|v|
ρ(v,M∗)

)
≤
M∗(|v|)
ρ(v,M∗)

and therefore

ρ

(
|v|

ρ(v,M∗)
,M∗

)
≤ 1

ρ(v,M∗)

∫
Ω

M∗(|v|)dx = 1

and ∣∣∣∣∫
Ω

u
v

ρ(v,M∗)
dx

∣∣∣∣ ≤ ‖u‖M .
Step 2: If ‖u‖M ≤ 1 then ρ

(
m(|u|

)
,M∗)

)
≤ 1.

Set un = uχ{|u|≤n} for all n ∈ N. Since un is bounded then
ρ
(
(m(|un|

)
,M∗) < +∞. Assume by contradiction that

∫
Ω
M∗(m(|u|

))
dx >

1 and let n0 ∈ N be such that
∫

Ω
M∗(m(|un0|

))
dx > 1. We have

M∗(m(|un0 |
)
< M

(
|un0|

)
+M∗(m(|un0|)|

)
= |un0|m

(
|un0 |

)
and therefore, by (i),

ρ
(
m(|un0|),M∗) < ∫

Ω

|un0 |m
(
|un0|

)
dx ≤ ‖un0‖M ρ

(
m(|un0|),M∗)

which contradicts ‖un0‖M ≤ ‖u‖M ≤ 1.
This is trivial from the definition of ‖u‖M , step 1 and the fact that
|u|m(|u|) = M(|u|) +M∗(m(|u|

))
.

Step 3: If ‖u‖M ≤ 1 then ρ(u,M) ≤ ‖u‖M .
Let us remark that for all s ≥ 0

M∗(m(s)) +M(s) = sm(s).
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Set v0 = m(|u|). From step 2, ρ(v0,M
∗) ≤ 1 and then

ρ(u,M) ≤ ρ(u,M) + ρ(v0,M
∗) =

∫
Ω

uv0 dx ≤ ‖u‖M .

Now we prove Holder’s inequality. From step 2 applied to M∗ and
v

‖v‖M∗
we have ρ

(
v

‖v‖M∗
,M∗

)
≤ 1, so then∣∣∣∣∫

Ω

u
v

‖v‖M∗
dx

∣∣∣∣ ≤ ‖u‖M
and Holder’s inequality follows.

The proof of (iii) is trivial. �

Finally, we give the following compact embedding result:

Theorem B.12. Let M be a N-function satisfying the ∆2-condition
(B.1) and let {un}n∈N be a sequence in L(Ω) such that

lim
n→∞

ρ(un,M) = 0.

Then
lim
n→∞

‖un‖M = 0.

Thus, the convergence in M-mean implies the converge with respect to
the ‖ · ‖M norm.

Proof. Let ε > 0 and take m ∈ N such that 1
2m−1 < ε. Using condition

(B.1) we also have

lim
n→∞

∫
Ω

M(2m|un|)dx = 0.

Let n0 ∈ N be such that for all n ≥ n0 we have∫
Ω

M(2m|un|)dx < 1.

From step 1 of the proof in the previous proposition we have that for
all n ≥ n0

‖2mun‖M ≤ ρ
(
2m|un|,M

)
+ 1 < 2,

which implies that

‖un‖M <
1

2m−1
< ε.

�
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