Determination of hydrogen peroxide by differential pulse polarography in advanced oxidation processes for water treatment - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Water Process Engineering Année : 2023

Determination of hydrogen peroxide by differential pulse polarography in advanced oxidation processes for water treatment

Résumé

Knowing the concentration of hydrogen peroxide (H2O2) is crucial for the monitoring and optimizing the Fenton reaction in advanced oxidation processes. Several analytical methods exist to determine these concentrations, but their applications can be difficult because of low selectivity (interaction with other metals), the use of toxic compounds, or low concentrations (µmol L-1). To overcome these problems, we developed a differential pulse polarographic (DPP) method at the dropping mercury electrode (DME) with the following conditions: tg = 1.0 s, Delta E = -100 mV and v = 10 mV s-1. Calibration curves had very high correlation coefficients (R² > 0.999). The limits of detection and quantification were evaluated respectively at 13 and 21 µmol L-1 with peak area measurements of hydrogen peroxide reduction (Ap). The DPP method was compared with other analytical methods (iodometric titration and spectrophotometry) for determining at low concentrations of H2O2 (in the order of mmol L-1 to µmol L-1) in Fenton and electro-Fenton processes. The method developed here allows measure low concentrations of hydrogen peroxide in Fenton and electro-Fenton processes in acidic solutions (similar to 3) and the presence of interfering species such as Fe3+ and dissolved oxygen.
Fichier principal
Vignette du fichier
Manuscript.pdf (413 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04115736 , version 1 (19-09-2023)

Identifiants

Citer

Lionel Domergue, Nicolas Cimetiere, Sylvain Giraudet, Didier Hauchard. Determination of hydrogen peroxide by differential pulse polarography in advanced oxidation processes for water treatment. Journal of Water Process Engineering, 2023, 53, pp.103707. ⟨10.1016/j.jwpe.2023.103707⟩. ⟨hal-04115736⟩
24 Consultations
8 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More