Regulation of laminin 1-induced pancreatic beta-cell differentiation by alpha6 integrin and alpha-dystroglycan.
Résumé
BACKGROUND: The ability to manipulate the development of pancreatic insulin-producing beta cells has implications for the treatment of type 1 diabetes. Previously, we found that laminin-1, a basement membrane trimeric glycoprotein, promotes beta-cell differentiation. We have investigated the mechanism of this effect, using agents that block the receptors for laminin-1, alpha6 integrin, and alpha-dystroglycan (alpha-DG). MATERIALS AND METHODS: Dissociated cells from 13.5-day postcoitum (dpc) fetal mouse pancreas were cultured for 4 days with laminin-1, with and without monoclonal antibodies and other agents known to block integrins or alpha-DG. Fetuses fixed in Bouin's solution or fetal pancreas cells fixed in 4% paraformaldehyde were processed for routine histology and for immunohistology to detect hormone expression and bromodeoxyuridine (BrdU) uptake. RESULTS: Blocking the binding of laminin-1 to alpha6 integrin with a monoclonal antibody, GoH3, abolished cell proliferation (BrdU uptake) and doubled the number of beta cells. Inhibition of molecules involved in alpha6 integrin signaling (phosphotidylinositol 3-kinase, F-actin, or mitogen-activated protein kinase) had a similar effect. Nevertheless, beta cells appeared to develop normally in alpha6 integrin-deficient fetuses. Blocking the binding of laminin-1 to alpha-DG with a monoclonal antibody, IIH6, dramatically decreased the number of beta cells. Heparin, also known to inhibit laminin-1 binding to alpha-DG, had a similar effect. In the presence of heparin, the increase in beta cells in response to blocking alpha integrin with GoH3 was abolished. CONCLUSIONS: These findings reveal an interplay between alpha6 integrin and alpha-DG to regulate laminin-1-induced beta-cell development. Laminin-I had a dominant effect via alpha-DG to promote cell survival and beta-cell differentiation, which was modestly inhibited by alpha6 signaling.