The Maximum Matrix Contraction Problem - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

The Maximum Matrix Contraction Problem

Résumé

In this paper, we introduce the Maximum Matrix Contraction problem, where we aim to contract as much as possible a binary matrix in order to maximize its density. We study the complexity and the polynomial approximability of the problem. Especially, we prove this problem to be NP-Complete and that every algorithm solving this problem is at most a 2 √ n-approximation algorithm where n is the number of ones in the matrix. We then focus on efficient algorithms to solve the problem: an integer linear program and three heuristics.
Fichier principal
Vignette du fichier
ISCO-2016.pdf (298.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04114016 , version 1 (01-06-2023)

Identifiants

Citer

Dimitri Watel, Pierre-Louis Poirion. The Maximum Matrix Contraction Problem. International Symposium on Combinatorial Optimization, May 2016, Vietri sul Mare, Italy. pp.426-438, ⟨10.1007/978-3-319-45587-7_37⟩. ⟨hal-04114016⟩
7 Consultations
16 Téléchargements

Altmetric

Partager

More