Randomized Optimization Framework tailored for Benchmarking & Auto-Design - Archive ouverte HAL
Poster De Conférence Année : 2022

Randomized Optimization Framework tailored for Benchmarking & Auto-Design

Résumé

Paradiseo is an open-source full-featured evolutionary computation framework which main purpose is to help you write your own stochastic optimization algorithms, insanely fast: Choose an algorithm template, select operators of interest, plug a benchmark and let it design the algorithm for you! It focus on the efficiency of the implementation of solvers, by providing: - a modular design for several types of paradigms, - the largest codebase of existing components, - tools for automated design and selection of algorithms, - a focus on speed and several parallelization options.
Fichier principal
Vignette du fichier
2022-06_Dreo__ParadisEO_page.pdf (5.9 Mo) Télécharger le fichier
2022-05-30_Dreo__Paradiseo-5min__slides.pdf (1.58 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04110712 , version 1 (30-05-2023)

Identifiants

  • HAL Id : hal-04110712 , version 1

Citer

Johann Dreo. Randomized Optimization Framework tailored for Benchmarking & Auto-Design. Benchmarked workshop, May 2022, Leiden, France. 2022. ⟨hal-04110712⟩
39 Consultations
37 Téléchargements

Partager

More