
Paradiseo is an open-source full-featured evolutionary computation framework
which main purpose is to help you write your own stochastic optimization
algorithms, insanely fast:

It focus on the efficiency of the implementation of solvers, by providing:
 - a modular design for several types of paradigms,
 - the largest codebase of existing components,
 - tools for automated design and selection of algorithms,
 - a focus on speed and several parallelization options.

Choose an algorithm template, select operators of interest,
plug a benchmark and let it design the algorithm for you!

AUTOMATED DESIGN
- Many Interoperable Operators
- On-the-fly Instantiation
- Millions of Algorithms Instances
- irace API automatic Export

Johann Dreo
Institut Pasteur & Université Paris Cité ⟩ Computational Biology dept. & Bioinformatics and Biostatistics hub ⟩ Computational Systems Biomedicine lab.

Randomized Optimization Framework
tailored for Benchmarking & Auto-Design

Full-featured

WHY PARADISEO?

Fast Benchmarking

Paradiseo provides the largest
mature codebase of state-of-the-
art algorithms, and focuses on
(automatically) find the most
efficient solvers.

Paradiseo is the fastest
framework on the market, which is
a crucial feature for modern and
robust approach to solver design
and validation.

The most classical impediment to the use of Paradiseo is
that you just want to check if your problem can actually be
solved with heuristics. You feel that it would be a loss of
time to learn complex stuff if it ends being useless.
However, you should keep in mind that:
 - Metaheuristics do seem very easy to implement in
            textbooks, but the state-of-the art versions of efficient
            algorithms can be a lot more complex.
 - It is usually easy to get something to actually run, but
            it is far more difficult to get an efficient solver.
 - Metaheuristics performances on a given problem are
            very sensitive to small variations in the parameter
            setting or the choice of some operators. Which render
            large experimental plans and algorithm selection
            compulsory to attain peak efficiency.
Fortunately, Paradiseo have the largest codebase of the
market, hardened along 20 years of development of tens of
solvers.
Additionally, it provides the tools to rapidly search for the
best combination of algorithms to solve your problem, even
searching for this combination automatically.

To give an order of magnitude:
 - If you use the "official" vanilla implementation of CMA-
            ES in Python/Numpy solving the BBOB problem suite
            through the COCO plateform, running the whole
            benchmark will take approximately 10 minutes on a
            single Intel Core i5 @ 2.50GHz with a solid state disk.
 - The same experiment, running the Paradiseo
            implementation using the seamless binding to the
            IOHprofiler BBOB implementation, will take 1 minute.

?

82 kloc
50 Contributors

LGPL/CeCILL

10× Faster
Benchmarking

irace Comma
Plus

Fast Bit M
utationUniform Mutation

Tournament
Rank Select

Statistics

EAF logger
IOH problem
IOH callerEvaluation

Replacement

Variation

Selection

Algorithm Forge

Plus

Fast Bits Mut. p=0.6

Tourn. of size 2

Algorithm encoding
P
a
ra
d
is
E
O

IO
H
e
x
p
e
ri
m
e
n
te
r

Algorithm
performance

MODULAR TEMPLATES
- Evolutionary Algorithms
- Local Searches
- Estimation of Distribution Algo.
- Particle Swarm Optimization
- Multi-Objective Algorithms

BENCHMARKING
- IOH experimenter binding
 - COCO, PBO, Wmodels, NKL
 - IOH analyzer Logger
 - Performance Logger
- Parallelization
- Container-compatible
- Auto. Command Line Interface
- Suspend on state

Example: Minimal CMA-ES

git clone https://github.com/nojhan/paradiseo.git

sudo apt install g++-8 cmake make libeigen3-dev
libopenmpi-dev doxygen graphviz libgnuplot-
iostream-dev

mkdir build ; cd build ; cmake -DEDO=ON .. && make
-j

c++ cmaes.cpp -I../eo/src -I../edo/src -
DWITH_EIGEN=1 -I/usr/include/eigen3 -std=c++17 -
L./lib/ -leo -leoutils -les -o cmaes

./cmaes --help

https://nojhan.github.io/paradiseo

Example of a modular "FastGA"

ParadisEO

<<Bits>>

eoAlgoFoundryFastGA
+crossover_rates: {double}
+crossover_selectors: {eoSelectOne}
+crossovers: {eoQuadOp}
+aftercross_selector: eoSelectOne
+mutation_rates: {double}
+mutation_selectors: {eoSelectOne}
+mutations: {eoMonOp}
+replacements: {eoReplacement}
+offspring_sizes: {size_t}
+eval: eoEvalFunc<Bits>

+select(encoded_algo:vector<int>)
+operator()(pop:eoPop<Bits>)

IOH_ecdf_logger
+target_range: RangeLinear
+budget_range: RangeLinear

+data(): IOH_AttainSuite

IOH_csv_logger

IOH_observer_combine
+vector<IOH_logger>

IOH_logger

+do_log(problem_info)

<<Bits>>

eoEvalIOHproblem
+pb: IOH_problem
+log: IOH_observer

+operator()(sol:Bits)

<<Bits>>

IOH_problem

W_Model_OneMax
+epistasis: int
+neutrality: int
+ruggedness: int
+max_target: int
+dimension: int

+operator()(sol:Bits): double

IOH_ecdf_sum

+operator()(ecdf:IOH_AttainSuite): double

After run

<<Bits>>

eoEvalFunc

fastga

+run(--problem:int,
 --pop-size:size_t,

--crossover-rate:int,
 --cross-selector:int,
 --crossover:int,
 --aftercross-selector:int,
 --mutation-rate:int,
 --mut-selector:int,
 --mutation:int,
 --replacement:int,
 --offspring-size:size_t)

Select, Run

irace

+run()

