One-step differentiation of iterative algorithms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

One-step differentiation of iterative algorithms

Résumé

In appropriate frameworks, automatic differentiation is transparent to the user at the cost of being a significant computational burden when the number of operations is large. For iterative algorithms, implicit differentiation alleviates this issue but requires custom implementation of Jacobian evaluation. In this paper, we study one-step differentiation, also known as Jacobian-free backpropagation, a method as easy as automatic differentiation and as performant as implicit differentiation for fast algorithms (e.g., superlinear optimization methods). We provide a complete theoretical approximation analysis with specific examples (Newton's method, gradient descent) along with its consequences in bilevel optimization. Several numerical examples illustrate the well-foundness of the one-step estimator.

Dates et versions

hal-04104382 , version 1 (24-05-2023)

Identifiants

Citer

Jérôme Bolte, Edouard Pauwels, Samuel Vaiter. One-step differentiation of iterative algorithms. Advances in Neural Information Processing Systems, 2023, New Orleans, United States. ⟨hal-04104382⟩
117 Consultations
0 Téléchargements

Altmetric

Partager

More