Hyperbolic reduced model for Vlasov-Poisson equation with Fokker-Planck collision
Résumé
This paper proposes a reduced model to simulate the one-dimensional Vlasov-Poisson equation with the non-linear Fokker-Planck operator. The model provides the space-time dynamics of a few macroscopic quantities constructed following the Reduced Order Method (ROM) in the velocity variable: the compression is thus applied to the semi-discretization of the Vlasov equation. To gain efficiency, a Discrete Empirical Interpolation Method (DEIM) is applied to the compressed non-linear Fokker-Planck operator. The size of the resulting reduced model is chosen empirically according to the Knudsen number. Furthermore, we propose a correction to the reduced collision operator that ensures the reduced moments to satisfy an Euler-type system. Numerical simulations of the reduced model show that the model can capture the plasma dynamics in different collisional regimes and initial conditions at a low cost.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|