A statistical approach for simulating the density solution of a McKean-Vlasov equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

A statistical approach for simulating the density solution of a McKean-Vlasov equation

Résumé

We prove optimal convergence results of a stochastic particle method for computing the classical solution of a multivariate McKean-Vlasov equation, when the measure variable is in the drift, following the classical approach of [BT97, AKH02]. Our method builds upon adaptive nonparametric results in statistics that enable us to obtain a data-driven selection of the smoothing parameter in a kernel type estimator. In particular, we generalise the Bernstein inequality of [DMH21] for mean-field McKean-Vlasov models to interacting particles Euler schemes and obtain sharp deviation inequalities for the estimated classical solution. We complete our theoretical results with a systematic numerical study, and gather empirical evidence of the benefit of using high-order kernels and data-driven smoothing parameters.
Fichier principal
Vignette du fichier
Density_estimation_McKean.pdf (698.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04096108 , version 1 (12-05-2023)

Licence

Identifiants

Citer

Marc Hoffmann, Yating Liu. A statistical approach for simulating the density solution of a McKean-Vlasov equation. 2023. ⟨hal-04096108⟩
33 Consultations
62 Téléchargements

Altmetric

Partager

More