Data-driven Reachability using Christoffel Functions and Conformal Prediction - Archive ouverte HAL
Conference Papers Year : 2023

Data-driven Reachability using Christoffel Functions and Conformal Prediction

Abstract

An important mathematical tool in the analysis of dynamical systems is the approximation of the reach set, i.e., the set of states reachable after a given time from a given initial state. This set is difficult to compute for complex systems even if the system dynamics are known and given by a system of ordinary differential equations with known coefficients. In practice, parameters are often unknown and mathematical models difficult to obtain. Data-based approaches are promised to avoid these difficulties by estimating the reach set based on a sample of states. If a model is available, this training set can be obtained through numerical simulation. In the absence of a model, real-life observations can be used instead. A recently proposed approach for data-based reach set approximation uses Christoffel functions to approximate the reach set. Under certain assumptions, the approximation is guaranteed to converge to the true solution. In this paper, we improve upon these results by notably improving the sample efficiency and relaxing some of the assumptions by exploiting statistical guarantees from conformal prediction with training and calibration sets. In addition, we exploit an incremental way to compute the Christoffel function to avoid the calibration set while maintaining the statistical convergence guarantees. Furthermore, our approach is robust to outliers in the training and calibration set.
Fichier principal
Vignette du fichier
tebjou23a.pdf (1.6 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04095745 , version 1 (16-09-2023)

Identifiers

  • HAL Id : hal-04095745 , version 1

Cite

Abdelmouaiz Tebjou, Goran Frehse, Faïcel Chamroukhi. Data-driven Reachability using Christoffel Functions and Conformal Prediction. The 12th Symposium on Conformal and Probabilistic Prediction with Applications (COPA 2023), Sep 2023, Limassol, Cyprus. ⟨hal-04095745⟩
182 View
66 Download

Share

More