Self-organization of SiGe planar nanowires via anisotropic elastic field
Résumé
Strained epitaxial SiGe on vicinal Si(001) substrates develops a morphological instability perpendicular to the steps unlike the usual growth instabilities on vicinal substrates, eventually leading to planar nanowires. We assess both theoretically and experimentally the effect of strain anisotropy on the 1D elongation of the Asaro-Tiller-Grinfel'd (ATG) instability. The anisotropy of strain relaxation due to the presence of step edges is considered in a continuum model with two different effective strains in the surface plane. We show that the measured in-plane strain anisotropy and the theoretical model are consistent with the experimental morphologies. Nice network of ultrasmall aligned elongations are predicted resulting from a complex interplay of kinetic and energetic phenomena associated with strain anisotropy.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|