Copositive matrices, sums of squares and the stability number of a graph - Archive ouverte HAL
Chapitre D'ouvrage Année : 2023

Copositive matrices, sums of squares and the stability number of a graph

Résumé

This chapter investigates the cone of copositive matrices, with a focus on the design and analysis of conic inner approximations for it. These approximations are based on various sufficient conditions for matrix copositivity, relying on positivity certificates in terms of sums of squares of polynomials. Their application to the discrete optimization problem asking for a maximum stable set in a graph is also discussed. A central theme in this chapter is understanding when the conic approximations suffice for describing the full copositive cone, and when the corresponding bounds for the stable set problem admit finite convergence.
Fichier principal
Vignette du fichier
chaper-SOS-cop-Vargas-Laurent.pdf (330.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04087992 , version 1 (03-05-2023)

Identifiants

  • HAL Id : hal-04087992 , version 1

Citer

Luis Felipe Vargas, Monique Laurent. Copositive matrices, sums of squares and the stability number of a graph. Michal Kočvara; Bernard Mourrain; Cordian Riener. Polynomial Optimization, Moments, and Applications, Springer, pp.99-132, In press. ⟨hal-04087992⟩
42 Consultations
49 Téléchargements

Partager

More