SYMPLECTIC NON-CONVEXITY OF TORIC DOMAINS - Archive ouverte HAL
Article Dans Une Revue Communications in Contemporary Mathematics Année : 2023

SYMPLECTIC NON-CONVEXITY OF TORIC DOMAINS

Résumé

We investigate the convexity up to symplectomorphism (called symplectic convexity) of star-shaped toric domains in R 4. In particular, based on the criterion from Chaidez-Edtmair in [4] via Ruelle invariant and systolic ratio of the boundary of star-shaped toric domains, we provide elementary operations on domains that can kill the symplectic convexity. These operations only result in small perturbations in terms of domains' volume. Moreover, one of the operations is a systematic way to produce examples of dynamically convex but not symplectically convex toric domains. Finally, we are able to provide concrete bounds for the constants that appear in Chaidez-Edtmair's criterion.
Fichier principal
Vignette du fichier
Final version_Symplectic non-convexity of toric domains_Dardennes_Gutt_Zhang.pdf (722.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04085705 , version 1 (29-04-2023)

Identifiants

Citer

Julien Dardennes, Jean Gutt, Jun Zhang. SYMPLECTIC NON-CONVEXITY OF TORIC DOMAINS. Communications in Contemporary Mathematics, In press, ⟨10.1142/S0219199723500104⟩. ⟨hal-04085705⟩
40 Consultations
76 Téléchargements

Altmetric

Partager

More