Molecular cloning, characterization and regulation by cadmium of a superoxide dismutase from the ectomycorrhizal fungus Paxillus involutus
Résumé
The gene encoding a superoxide dismutase (PiSOD) was cloned by suppressive subtractive hybridization from cDNA library of the ectomycorrhizal fungus, Paxillus involutus, grown under cadmium-stress conditions. The encoded protein was presumed to be localized in the peroxisomes because it contained a C-terminal peroxisomal localization peptide (SKL) and lacked an N-terminal mitochondrial transit peptide. Complementation of an Escherichia coli SOD null strain that is unable to grow in the presence of paraquat or cadmium indicated that cloned Pisod encoded a functional superoxide dismutase. Sensitivity of PiSOD activity to H 2 O 2 but not KCN, and sequence homologies to other SODs strongly suggest that it is a manganesecontaining superoxide dismutase. Monitoring PiSOD transcript, immunoreactive polypeptide and superoxide dismutase activity following cadmium stress suggests that the principal level of control is post-translational. This is, to our knowledge, the first insight in the characterization of molecular events that take place in an ectomycorrhizal fungus during exposure to heavy metals.