Numerical simulation of fiber–matrix debonding: Inverse identification of interface properties - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Engineering Fracture Mechanics Année : 2023

Numerical simulation of fiber–matrix debonding: Inverse identification of interface properties

B. Koohbor
D. Long
J. Bikard

Résumé

Fiber-matrix interface debonding is studied by means of single-fiber epoxy-glass fiber specimens under transverse tensile loading. Experimental observations show abrupt debonding initiation between 67 and 83 deg. followed by stable debonding propagation. Similar abrupt debonding initiation is predicted using the coupled criterion (CC). The latter predicts crack initiation considering both stress and energy aspects from which a range of interface shear and opening critical energy release rates (ERR) and strengths can be derived. Depending on these parameters, initiation is found to be either driven by energy solely or by both stress and energy conditions. The loading required for initiation depends on the opening (mode I) critical ERR and tensile and shear strengths. The debonding arrest angle also depends on the shear (mode II) critical ERR. Consequently, a three steps methodology to identify the interface properties is described and an optimum set of parameters is determined by focusing on the stable debonding propagation after initiation using Linear Elastic Fracture Mechanics.
Fichier principal
Vignette du fichier
main.pdf (453.03 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Licence : CC BY - Paternité

Dates et versions

hal-04080578 , version 1 (25-04-2023)

Licence

Paternité

Identifiants

Citer

H. Girard, Aurélien Doitrand, B. Koohbor, R.G. Rinaldi, N. Godin, et al.. Numerical simulation of fiber–matrix debonding: Inverse identification of interface properties. Engineering Fracture Mechanics, inPress, ⟨10.1016/j.engfracmech.2023.109254⟩. ⟨hal-04080578⟩
11 Consultations
32 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More