Collaborative clustering based on Algorithmic Information Theory - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Collaborative clustering based on Algorithmic Information Theory

Résumé

Clustering is a compression task which consists in grouping similar objects into clusters. In real-life applications, the system may have access to several views of the same data and have each view process by a specific clustering algorithm: this framework is called collaborative clustering and can benefit from algorithms capable of exchanging information between the different views. In this paper, we consider this type of unsupervised ensemble learning as a compression problem and develop a theoretical framework based on algorithmic theory of information suitable for multi-view clustering and collaborative clustering applications. Using this approach, we propose a new algorithm based on solid theoretical basis, and test it on several real and artificial data sets.
Fichier principal
Vignette du fichier
cap2017-clustering.pdf (371.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04080050 , version 1 (24-04-2023)

Identifiants

  • HAL Id : hal-04080050 , version 1

Citer

Pierre-Alexandre Murena, Jérémie Sublime, Basarab Matei, Antoine Cornuéjols. Collaborative clustering based on Algorithmic Information Theory. CAp ( Conférence sur l'Apprentissage Automatique ) 2017, Jun 2017, Grenoble, France. ⟨hal-04080050⟩
107 Consultations
31 Téléchargements

Partager

More