Pathological set with loss of regularity for nonlinear Schrödinger equations - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2024

Pathological set with loss of regularity for nonlinear Schrödinger equations

Résumé

We consider the mass-supercritical, defocusing, nonlinear Schrödinger equation. We prove loss of regularity in arbitrarily short times for regularized initial data belonging to a dense set of any fixed Sobolev space for which the nonlinearity is supercritical. The proof relies on the construction of initial data as a superposition of disjoint bubbles at different scales. We get an approximate solution with a time of existence bounded from below, provided by the compressible Euler equation, which enjoys zero speed of propagation. Introducing suitable renormalized modulated energy functionals, we prove spatially localized estimates which make it possible to obtain the loss of regularity.
Fichier principal
Vignette du fichier
loss-rev.pdf (358.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04075293 , version 1 (20-04-2023)
hal-04075293 , version 2 (13-06-2023)

Identifiants

Citer

Rémi Carles, Louise Gassot. Pathological set with loss of regularity for nonlinear Schrödinger equations. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, inPress, ⟨10.4171/aihpc/126⟩. ⟨hal-04075293v2⟩
68 Consultations
34 Téléchargements

Altmetric

Partager

More