Combining MD-LAMMPS and MC-McChasy2 codes for dislocation simulations of Ni single crystal structure - Archive ouverte HAL Access content directly
Journal Articles Nucl.Instrum.Meth.B Year : 2023

Combining MD-LAMMPS and MC-McChasy2 codes for dislocation simulations of Ni single crystal structure

Cyprian Mieszczynski
  • Function : Author
Przemyslaw Jozwik
  • Function : Author
Kazimierz Skrobas
  • Function : Author
Kamila Stefanska-Skrobas
  • Function : Author
Renata Ratajczak
  • Function : Author
Jacek Jagielski
  • Function : Author
Edyta Wyszkowska
  • Function : Author
Alexander Azarov
  • Function : Author
Katharina Lorenz
  • Function : Author
Eduardo Alves
  • Function : Author

Abstract

The unique capability of the new version of the McChasy code (called McChasy2) is to provide the possibility to simulate experimental energy spectra delivered by Rutherford Backscattering Spectrometry in channeling direction (RBS/C) using large atomic structures (ca. 108 atoms). Ni-based alloys are nowadays one of the most studied and promising materials that can be used in the power generation sector and in general for high-temperature applications because of their radiation resistance and proof against harsh environmental conditions. In this work, we present recent results of investigations regarding simulations of extended structural defects (edge dislocations and loops) developed in the directions typically observed in the fcc systems that are formed inside nickel-based single-crystal alloys. The extended defect models are created using ATOMSK and the Molecular Dynamics (MD)-LAMMPS thermalization process. The models are then used to create virtual samples and fit experimental RBS/C spectra.
No file

Dates and versions

hal-04074915 , version 1 (19-04-2023)

Identifiers

Cite

Cyprian Mieszczynski, Przemyslaw Jozwik, Kazimierz Skrobas, Kamila Stefanska-Skrobas, Renata Ratajczak, et al.. Combining MD-LAMMPS and MC-McChasy2 codes for dislocation simulations of Ni single crystal structure. Nucl.Instrum.Meth.B, 2023, 540, pp.38-44. ⟨10.1016/j.nimb.2023.04.010⟩. ⟨hal-04074915⟩
5 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More