Soil respiration–driven CO 2 pulses dominate Australia’s flux variability - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Science Année : 2023

Soil respiration–driven CO 2 pulses dominate Australia’s flux variability

Eva-Marie Metz
Sanam Vardag
Sourish Basu
Martin Jung
  • Fonction : Auteur
Bernhard Ahrens
Tarek El-Madany
Stephen Sitch
Vivek Arora
  • Fonction : Auteur
Peter Briggs
Atul Jain
Etsushi Kato
Danica Lombardozzi
Julia Nabel
Benjamin Poulter
Roland Séférian
  • Fonction : Auteur
Hanqin Tian
Andrew Wiltshire
Wenping Yuan
  • Fonction : Auteur
Xu Yue
Sönke Zaehle
Nicholas Deutscher
David Griffith
André Butz

Résumé

The Australian continent contributes substantially to the year-to-year variability of the global terrestrial carbon dioxide (CO 2 ) sink. However, the scarcity of in situ observations in remote areas prevents the deciphering of processes that force the CO 2 flux variability. In this study, by examining atmospheric CO 2 measurements from satellites in the period 2009–2018, we find recurrent end-of-dry-season CO 2 pulses over the Australian continent. These pulses largely control the year-to-year variability of Australia’s CO 2 balance. They cause two to three times larger seasonal variations compared with previous top-down inversions and bottom-up estimates. The pulses occur shortly after the onset of rainfall and are driven by enhanced soil respiration preceding photosynthetic uptake in Australia’s semiarid regions. The suggested continental-scale relevance of soil-rewetting processes has substantial implications for our understanding and modeling of global climate–carbon cycle feedbacks.

Dates et versions

hal-04063051 , version 1 (08-04-2023)

Identifiants

Citer

Eva-Marie Metz, Sanam Vardag, Sourish Basu, Martin Jung, Bernhard Ahrens, et al.. Soil respiration–driven CO 2 pulses dominate Australia’s flux variability. Science, 2023, 379 (6639), pp.1332-1335. ⟨10.1126/science.add7833⟩. ⟨hal-04063051⟩
24 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More