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Abstract: The Australian continent contributes substantially to the year-to-year variability of the 

global terrestrial carbon dioxide (CO2) sink. However, the scarcity of in-situ observations in 

remote areas prevents deciphering the processes that force the CO2 flux variability. Here, 

examining atmospheric CO2 measurements from satellites in the period 2009-2018, we find 

recurrent end-of-dry-season CO2 pulses over the Australian continent. These pulses largely control 

the year-to-year variability of Australia's CO2 balance, due to 2-3 times higher seasonal variations 

compared to previous top-down inversions and bottom-up estimates. The CO2 pulses occur shortly 

after the onset of rainfall and are driven by enhanced soil respiration preceding photosynthetic 

uptake in Australia’s semi-arid regions. The suggested continental-scale relevance of soil 

rewetting processes has large implications for our understanding and modelling of global climate-

carbon cycle feedbacks. 

One-Sentence Summary: Satellite CO2 measurements find large CO2 pulses over Australia 

attributable to rewetting of seasonally dry soils. 
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Main Text: Terrestrial ecosystems drive the seasonal and year-to-year variability of the global 

carbon dioxide (CO2) sink (1). Previous research identified semi-arid regions as hotspots of 

global CO2 balance inter-annual variability (2–5) due to their large sensitivity of photosynthetic 

carbon uptake to fluctuations in water availability (6, 7). The Australian continent is primarily 

covered with semi-arid ecosystems and experiences large variations in rainfall. This makes 

Australia particularly relevant for the variability in the global carbon cycle (8–13), contributing 

up to 60% to yearly anomalies of the global terrestrial CO2 sink (2). 

However, current approaches for attributing global CO2 sink variations to certain regions and 

mechanisms are highly uncertain, which limits our ability to model climate-carbon cycle 

feedbacks and project future climate (14, 15). Global process-based ecosystem models 

underestimate observed CO2 flux variability across semi-arid sites due to the complexity of 

carbon-water cycle interactions and the diversity of ecosystem responses to water fluctuations 

(16, 17). The same holds true for machine learning based models trained on local carbon flux 

observations (18, 19), which is due to the scarcity of available flux measurements in low-latitude 

semi-arid regions (20) as well as due to the inability to represent potentially important non-

instantaneous carry-over effects (21). Atmospheric transport inversions based on in-situ 

measurements of airborne CO2 also suffer from the scarcity of observations in remote areas and 

thus the inversions cannot reliably attribute CO2 flux variability to specific regions, despite 

growing monitoring capacities (22, 23). However, recent satellite observations of atmospheric 

column CO2 deliver data where ground-based in-situ concentration measurements and carbon 

flux networks are sparse and thus, satellite CO2 data can fill important gaps and provide new 

constraints on regional scale patterns and processes (8, 24–28).  

Here, using satellite observations of atmospheric CO2 concentrations from the Greenhouse 

Gases Observing Satellite (GOSAT) for the period 2009 to 2018, we identify a net CO2 pulse to 
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the atmosphere that occurs over Australia at the end of the dry season in most years with variable 

magnitude. We show that this pattern appears to dominate the seasonal and year-to-year 

variations of Australia’s CO2 balance for that period, while it is not evident in traditional 

atmospheric inversions using in-situ measurements only, in the FLUXCOM machine learning 

based extrapolations of in-situ flux measurements, and most process-based ecosystem models of 

the TRENDY initiative. The few process-based TRENDY models that reproduce the CO2 pulse 

pattern qualitatively suggest that it is caused by rapid respiratory carbon release with the onset of 

the rainy season while the increase in photosynthetic carbon uptake lags behind. This observed 

process is consistent with the phenomenon of respiration pulses after rewetting events known as 

“Birch effect” (29, 30) The Birch effect has been described extensively in local studies of water-

limited systems (31) but its large-scale relevance remained unknown. 

 

Atmospheric CO2 peak over Australia 

The Greenhouse Gases Observing Satellite (GOSAT) has been delivering global 

measurements of the column-average dry-air mole fractions (“concentrations”) of atmospheric 

CO2 since its launch in 2009 (32). After subtracting the secular trend (33), the record of GOSAT 

record for the period 2009-2018 (Fig. 1) reveals a seasonal pattern above Australia with CO2 

draw-down in March, April, May (MAM) and a CO2 peak of variable magnitude at the end of the 

dry season in October, November, December (OND). These patterns are consistent among two 

retrievals independently applied to GOSAT (GOSAT/RemoTeC (34) and GOSAT/ACOS (35), 

Table S1) and they are present in CO2 concentrations measured by the Orbiting Carbon 

Observatory (OCO-2 (36, 37), period 2014 to 2018, Table S1) as well as in ground-based data of 

the Total Carbon Column Observing Network (38) (Fig. S1 and S2). 
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Fig. 1. Detrended CO2 concentrations over Australia from satellite and models. (A) 

Detrended column-average dry-air mole fractions of CO2 measured by GOSAT (red) and 

simulated by inverse models assimilating in-situ ground-based measurements (blue). Data are 

monthly averages for Australia. Red shading indicates the range of the GOSAT/RemoTeC and 

GOSAT/ACOS algorithms. Blue shading indicates the range of the CarbonTracker, CAMS, and 

TM5-4DVAR inverse models. (B) Mean and standard deviation (shading) over the period 2009 

to 2018. 

 

In contrast, the atmospheric column CO2 concentrations simulated by three inverse atmospheric 

transport models (CarbonTracker CT2019B (39), CAMS (40), TM5-4DVAR (41)) underestimate 

the CO2 draw-down in MAM and lack the CO2 pulses in OND (Fig. 1). Driven by atmospheric 

winds, these transport models deliver concentration fields that are optimally compatible with in-

situ measured CO2 concentrations and the a priori biogenic, oceanic, fire and fossil CO2 surface-

atmosphere fluxes (33).  However, due to their sparsity in and around Australia (see Fig. S3), the 

in-situ measurements provide only marginal constraints on the regional flux balance. Thus, the 

discrepancy between CO2 concentrations from GOSAT and traditional in-situ based atmospheric 
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inversions hints at the existence of a carbon release mechanism in Australian ecosystems that has 

remained undetected by the existing in-situ CO2 monitoring system. 

 

Australian top-down and bottom-up fluxes 

To improve on the surface flux estimates for Australia, we feed the GOSAT CO2 

concentrations into one of the atmospheric inverse models (TM5-4DVAR) together with the in-

situ CO2 measurements. We find indeed that the recurring end-of-dry-season CO2 concentration 

peaks are attributed to a carbon release pattern originating from land ecosystems, which is not 

present in the inversions when assimilating in-situ CO2 data alone (Fig. 2A).  

Our new estimates of Australia’s carbon balance variability based on assimilating GOSAT 

together with in-situ data show a nearly doubled peak-to-peak amplitude of the seasonal cycle 

(172±47 TgC/month, mean ± standard deviation over the 2009 to 2018 period, July-to-June 

peak-to-peak amplitude) compared to the in-situ-only inversions (93±11 TgC/month). Moreover, 

the end-of-dry-season CO2 pulses found by the GOSAT inversions imply a 4-fold greater year-

to-year variability of the annual CO2 fluxes (0.233 PgC/a, standard deviation over the 2010 to 

2018 period) than for the in-situ-only inversions (0.048 PgC/a) (Table S2). Fluxes obtained by 

assimilating OCO-2 together with in-situ data for the period 2015 to 2018 show the same end-of-

dry-season pulses and agree well with the fluxes of the GOSAT inversion (see Fig. S4). 
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Fig. 2. Australian net CO2 fluxes. (A) Top-down estimates of the net monthly Australian 

carbon fluxes inferred by in-situ CO2 measurements based inverse models (blue) and by TM5-

4DVAR assimilating in-situ measurements together with GOSAT observations (red), compared 

to bottom-up FLUXCOM+GFED NBP (yellow) and the TRENDY ensemble mean NBP (grey). 

Shading indicates the range among the various top-down data streams (in-situ based 

CarbonTracker, CAMS, and TM5-4DVAR in blue, TM5-4DVAR+RemoTeC/GOSAT and TM5-

4DVAR+ACOS/GOSAT in red) and the standard deviation among the TRENDY ensemble (grey). (C) 

NBP of a subgroup of TRENDY models (black) compared to the other models (grey), to the 

GOSAT inversions (red, same as in (A)) and to GFED fire emissions (orange). Shading as in 

(A). (B) and (D) Mean and standard deviation (shading) over the period 2009 to 2018 and the 

mean peak-to-peak seasonal cycle amplitudes (bars). Positive fluxes correspond to carbon 

emissions into the atmosphere. 
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To understand the origin of the CO2 pulses, we compare to bottom-up estimates from machine 

learning (FLUXCOM (18, 20)) and 18 process-based dynamic global vegetation models 

(DGVMs) from the TRENDY (v9) ensemble (42). Those also provide the component fluxes of 

gross primary productivity (GPP) and terrestrial ecosystem respiration (TER) enabling the 

attribution to variations in photosynthetic carbon uptake and respiratory carbon release. We 

further include fire emissions (FIRE) from the Global Fire Emission Database (GFED) as a 

potential factor for explaining the pattern. To compare to the top-down inversions, we calculate 

net biome production (NBP = TER + FIRE - GPP) by adding fire emissions from GFED to net 

ecosystem exchange (NEE = TER – GPP) from FLUXCOM. That is, positive fluxes correspond 

to carbon emissions into the atmosphere. For TRENDY, NBP is taken directly from the 

simulations of the DGVMs. We find that FLUXCOM+GFED derived NBP lacks the end-of-dry-

season CO2 pulses (Fig. 2A) and its seasonal amplitude (64±16 TgC/month) underestimates the 

one found by the GOSAT inversions by a factor of 3. This could be explained by the sparsity of 

Australian flux tower data in the training of the FLUXCOM machine learning models (only 4 of 

224 sites lie in Australia, see Fig. S3) causing extrapolation errors (18), and by known 

weaknesses in representing certain fluctuations in response to water availability (19) or 

“memory” effects due to non-accounted carbon pool dynamics (43). Our analysis further 

suggests that local and transported fire emissions might contribute at the beginning of the carbon 

pulses but cannot explain their magnitude and duration (Fig. 2B and Fig. S5).  

The ensemble of TRENDY NBP simulations shows a large inter-model spread and also no 

end-of-dry-season CO2 pulses on average (Fig. 2A) causing a seasonal amplitude (85±20 

TgC/month) which is about half of that of the GOSAT inversions. However, the dry season 

pulses are present in a subset of five of the TRENDY DGVMs (Fig. 2B and Table S1). For this 
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subset, the timing and the magnitude (except for the year 2009) of the pulses and their seasonal 

amplitude (123±31 TgC/month) are closer to the pulses found by the GOSAT inversions. This 

finding suggests that the CO2 pulses can be explained by ecosystem processes shaping the 

phasing of photosynthesis and respiration. 

 

Phasing of respiration and photosynthesis 

We find that the subset of DGVMs which are in good agreement with the GOSAT inversions 

reveals a distinctly different seasonal timing of GPP and TER than the other DGVMs. For the 

selected subset, the CO2 pulses are driven by TER, which increases rapidly at the onset of the 

rainy season while GPP takes up only a few weeks later (Fig. 3A). The pulses originate from the 

semi-arid regions (Fig. S6). For the other DGMVs, TER and GPP show a mostly synchronous 

phasing throughout the year yielding no CO2 pulses (Fig. 3B). The precipitation records for the 

semi-arid regions of Australia (Fig. 3C, Fig. S3) suggest that the respiration driven pulses shown 

by the GOSAT inversions and the selected TRENDY models are weaker or do not occur in years 

with anomalously strong precipitation during the dry period (Austral winter) such as in the La 

Nina years 2010 and 2016. This implies that the observed pulses are conditional on rewetting of 

dry soils. 
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Fig. 3. Seasonal timing of gross carbon fluxes among TRENDY models. (A) Gross primary 

production (GPP, green) and total respiration (TER, light-blue) for Australia for the selection of 

TRENDY DGVMs that replicate the end-of-dry-season CO2 pulses. NBP is shown in black in the 

lower part (grey shading indicates the standard deviation among the model subset). (B) Same as 

panel a but for the other TRENDY models that do not replicate the end-of-dry-season CO2 

pulses. (C) Mean monthly precipitation over the entire Australian region (black) and the semi-

arid part (see Fig. S3) of Australia (blue). 

 

With that, the detected continental-scale CO2 pulses are consistent with site-level 

observations of dryland ecosystems which show an asynchronous response of respiration and 
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photosynthesis to precipitation pulses (44). The rapid response of microbial respiration to 

rewetting events, is known as “Birch effect” and has been described in the literature of specific 

sites in some semi-arid regions for many decades (29–31). After being dormant in the dry period, 

soil microbes are activated by the moisture supply from rainfall. Benefitting from warm soils, 

accumulated and readily available substrate gets respired quickly going along with rapid growth 

of microbial populations. These dynamics of soil microbial processes cause a respiration CO2 

pulse with rewetting of dry soils which is also evident in Australian flux tower data (Fig. S7). 

Photodegradation of surface litter (45) and the death of microorganisms during the dry period 

(46, 47) may lead to the accumulation of easily decomposable substrate available to 

microorganisms at the onset of rain. It remains an open question whether the respiration pulses 

are mainly driven by substrates accumulated during the dry period and to what extent they are 

fueled by mobilization and decomposition of physically protected carbon (47). These processes 

are not represented explicitly or in detail in the TRENDY DGVMs and thus, the DGVMs cannot 

resolve how the site-level mechanisms scale up to the continental-scale effect observed here. 

Nonetheless, a selection of models effectively captures the continental-scale CO2 pulses by a fast 

response of respiration and a delayed response of photosynthesis to the onset of the rainy season. 

This highlights the importance of subtle differences in effective parameterizations of respiration 

and photosynthesis to moisture fluctuations. Associated uncertainties affect the skill of the 

models to represent the carbon cycle of semi-arid ecosystems. 

Our study demonstrates that the respiration driven CO2 pulses over Australia following the 

end of the dry season are of large-scale relevance and appear to dominate the variability of the 

continent’s carbon balance. It implies that GOSAT inversions have shed light on a blind spot of 

previous top-down and bottom-up approaches for quantifying and attributing CO2 flux variability 

over semi-arid regions.  This calls for revisiting the contribution of semi-arid systems to CO2 
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balance variations on global scales. Considering changing precipitation patterns under climate 

change, the suggested continental-scale process understanding may improve representations of 

climate-carbon cycle feedbacks and projections of future carbon fluxes. 

Materials and Methods 

Summary of observation and model data 

The main characteristics of the observation and model data are listed in Table S1. 

 

TRANSCOM region Australia 

Our region of interest is ’Australia’ as defined by the TRANSCOM-3 experiment (48) 

including the Australian continent and New Zealand. For the main analysis, concentration and 

flux data are averaged and aggregated, respectively, over a month or a year for the entire region. 

Satellite concentrations are only reported if averaging includes more than 10 data points. To 

avoid sampling effects on the coastline, all flux datasets are aggregated on a 1°×1° grid before 

applying the TRANSCOM region mask to aggregate over the entire region and one month. Grid 

cells with their centers inside the Australian region are counted to belong to the region. 

 

CO2 concentrations 

We primarily use GOSAT column-average dry-air mole fractions of CO2 (Fig. 1), also 

denoted XCO2, generated by operating the RemoTeC radiative transfer and retrieval algorithm 

(8, 34) on shortwave-infrared spectra of sunlight backscattered to GOSAT by the Earth’s surface 

and atmosphere (called GOSAT/RemoTeC). The algorithm version employed here corresponds 

to the one used previously (8) with updates related to the quality filtering and to ancillary input 

data, in particular updated a priori gas concentrations. Furthermore, we also use GOSAT CO2 

records generated by the NASA Atmospheric CO2 Observations from Space (ACOS) algorithm 

version 9r(Lite) (49) (called GOSAT/ACOS). 

To confirm robustness of the satellite data, we compare GOSAT CO2 against records of the 

Orbiting Carbon Observatory-2 version 10 (OCO-2) (50) covering the time period 2014 to 2018 

(Table S1 and Fig. 1). We further compare the satellite data to ground-based measurements of 

the column-average dry-air mole fractions reported by the Total Carbon Column Observing 

Network (TCCON) (38). Thereby, data of the two Australian stations Darwin and Wollongong 

are used (Table S1 and Fig. S2). Both stations are located near the coastline and neither are in the 

semi-arid regions (see Fig. S3). Therefore, the comparison to the continental GOSAT data 

suffers from limited representativeness. 

Simulated CO2 concentrations (Fig. 1) are taken from three inverse atmospheric transport 

models (Table S1) that estimate surface-atmosphere fluxes which are optimally compatible with 

atmospheric concentration measurements and prior flux knowledge: TM5 four-dimensional 

variational inversion system (TM5-4DVAR) (41), CarbonTracker (CT2019B) (39, 51), and the 

Copernicus Atmosphere Monitoring Service (CAMS) (40, 52, 53). Given the optimized fluxes, 

the transport model is run forward to produce simulated concentration fields. All three models 

assimilate ground-based in-situ CO2 concentration measurements collected from the global 

monitoring networks (54). We use TM5-4DVAR for further analysis to assimilate the 

GOSAT/RemoTeC, GOSAT/ACOS, and OCO-2 CO2 data together with the in-situ observations. 
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For illustrating the seasonal concentration dynamics in Fig. 1, we remove the secular increase 

of CO2 concentrations in the atmosphere by detrending the concentration data, i.e. we subtract 

the global atmospheric background assuming a piece-wise yearly linear increase according to the 

annual mean carbon dioxide growth rates (GR) reported by the National Oceanic and 

Atmospheric Administration (NOAA) based on globally averaged marine surface data (55). 

Thus, the background concentration for month m ([1,...,12]) and year y ([2009,...,2018]) reads: 







1

2009,
12

)(
y

i yimy GR
m

GRBGBG       (1) 

where BG is an overall offset determined by setting the mean of the detrended CO2 

concentrations to zero, the second term accumulates the growth since the start of the time series 

in the year 2009 until the start of year y, and the third term accounts for the fractional increase 

during the respective year y. We subtract the background individually for all CO2 concentration 

data sets (satellite as well as simulation data). Note that detrending is only applied to 

concentration data used in Fig. 1 for illustration purposes, the inverse models assimilate whole 

CO2 concentrations. 

 

CO2 top-down fluxes 

The three inverse atmospheric models TM5-4DVAR, CarbonTracker, and CAMS, that 

provide simulated CO2 concentration fields, also provide estimates of the surface-atmosphere 

fluxes compatible with ground-based in-situ CO2 measurements (Fig. 2A). For further analysis, 

we use TM5-4DVAR to assimilate the GOSAT CO2 data together with the ground-based in-situ 

observations (Fig. 2A and 2B). Furthermore, we assimilate OCO-2 data together with in-situ 

measurements to obtain fluxes for comparison (Fig. S4). Depending on whether 

GOSAT/RemoTeC, GOSAT/ACOS, or OCO-2 data are used, we denote the respective flux 

estimates in the Extended Materials with InverseModel+RemoTeC/GOSAT, 

InverseModel+ACOS/GOSAT,and InverseModel+OCO-2. The models provide output in terms of the net 

CO2 fluxes partitioned into biosphere, oceanic, fire, and fossil fluxes. TM5-4DVAR is 

configured to estimate weekly biosphere and oceanic fluxes on a regular 6°(longitude) × 

4°(latitude) grid while fire and fossil emissions are imposed from the Quick Fire Emissions 

Dataset (QFED (56)) and the Open-source Data Inventory for Anthropogenic CO2 (ODIAC (57, 

58)), respectively. The construction of the prior oceanic, fire and biosphere fluxes are detailed 

elsewhere (59). We average the oceanic, biospheric and fire fluxes between 2000 and 2019 to 

create 20-year climatological land and ocean sinks. We then apply year-specific scaling on these 

sinks to match the observed annual atmospheric CO2 growth given year-specific fossil CO2 

emissions. The prior fluxes thus constructed follow the atmospheric growth of CO2 over two 

decades.   

For all inversions, NBP is calculated as the sum of a posteriori biosphere fluxes and fire 

emissions. Positive fluxes correspond to carbon emissions into the atmosphere, negative fluxes 

indicate carbon uptake by the ecosystems. While all TM5-4DVAR data is already provided on 

the scale of TRANSCOM regions, CAMS and CarbonTracker fluxes are aggregated on a 1°x1° 

grid before applying the TRANSCOM region mask. 

 

CO2 bottom-up fluxes 

FLUXCOM provides estimates of global bottom-up net ecosystem exchange (NEE) based on 

upscaling of local flux measurements. To this end, a machine learning approach uses the eddy 

covariance measurements by the FLUXNET tower network together with meteorological and 

satellite remote sensing data to deliver NEE globally at fine spatial resolution (18, 20). The 
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FLUXCOM version, used here, only includes four stations of the Australian OzFlux network 

(Fig. S3). To calculate FLUXCOM compatible NBP (Fig. 2A), we take the sum of the remote 

sensing FLUXCOM ensemble and fire emissions from the Global Fire Emission Database 

(GFED) v4.1s (60). Fluxes due to land-use change are neglected. 

The TRENDY model inter-comparison project collects various DGVMs and contributes to 

the Global Carbon Project (1). Here, we use 18 TRENDY version 9 models listed in Table S1. 

NBP, GPP and TER provided by the TRENDY DGVMs are aggregated on a 1°x1° grid before 

applying the TRANSCOM region mask. As the land-ocean masks among the TRENDY models 

differ, the continental NBP is taken as mean flux in units µgCO2m
−2s−1, then multiplied by the 

Australian region area to obtain total fluxes and converted to TgC/month. Most of the models 

provide NBP directly. For the models CABLE-POP and DLEM, not providing net fluxes, NBP is 

constructed from only GPP and TER, as both models do not provide FIRE fluxes. The subset of 

models showing the end-of-dry-season CO2 pulses is termed TRENDYselection. The other subset of 

TRENDY models not showing the pulses are called TRENDYothers (Fig. 2B, Fig. 3 and Table 

S1). 

Figure 3C shows the timing of bottom-up NBP for correlations with monthly mean 

precipitation. The latter is taken from the European Centre for Medium Range Weather Forecasts 

(ECMWF) ERA5-land data product (61, 62). We average the ERA-5 data over entire Australia 

and the semi-arid parts (see Fig. S3) defined as all the 1°x1° grid cells with less than 22 mm of 

monthly mean precipitation during four consecutive months in the ten-year averaged annual 

cycle.  
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Fig. S1. Detrended CO2 concentrations above Australia from GOSAT, OCO-2 and inverse 

models. Detrended monthly mean column-average dry-air mole fractions of CO2 measured by 

GOSAT (red), OCO-2 (black, from 2014) and simulated by in-situ-driven inverse models (blue) 

averaged over continental Australia. Red shading indicates the range of the GOSAT/RemoTeC 

and GOSAT/ACOS algorithms. Blue shading indicates the range of the CarbonTracker, CAMS, 

and TM5-4DVAR inverse models. 

 

 
Fig. S2. Detrended CO2 concentrations above Australia from satellite and TCCON stations. 

Detrended monthly mean column-average dry-air mole fractions of CO2 measured by GOSAT 

(red) averaged over continental Australia and for individual TCCON stations (Darwin (63) in grey, 

Wollongong (64) in black). Red shading indicates the range of the GOSAT/RemoTeC and 

GOSAT/ACOS algorithms. 
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Fig. S3. TRANSCOM region and CO2 measurement stations. The Australian regions of the 

TRANSCOM-3 intercomparison project is depicted in dark grey. The TRANSCOM region 

Australia includes Australia and New-Zealand and is divided in a semi-arid (blue) and not semi-

arid part (black borders) on a 1°x1° grid. The CO2 concentration measurement stations included in 

ObsPack (54) are shown in purple (crosses for surface and tower measurements, dot for Pacific 

Ocean Cruise (POC) measurements). These measurements are used by the inverse models. The 

eddy covariance flux measurement towers within FLUXNET and used by FLUXCOM are given 

as red crosses. The three OzFlux towers used in Fig. S6 are given as red dots with labels. The two 

TCCON stations are marked as yellow triangles with labels. 

 
Fig. S4. Australian net CO2 fluxes with OCO-2 based fluxes. Like Fig. 2A, but additionally 

with OCO-2 based fluxes. Top-down estimates of the net monthly Australian carbon fluxes 

inferred by TM5-4DV AR assimilating in-situ CO2 measurements alone (blue), together with 

GOSAT observations (red), and together with OCO-2 (black), compared to bottom-up 

FLUXCOM+GFED NBP (yellow) and the TRENDY ensemble mean NBP (grey). Shading 

indicates the range among the various top-down data streams (blue, red) and the standard 

deviation among the TRENDY ensemble (grey). 
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Fig. S5. CO2 fire emissions in Australia. The monthly CO2 fire emissions collected by three fire 

emission databases (GFED in orange, Global Fire Assimilation System (GFAS (65)) in red and 

the Fire INventory from NCAR (FINN (66)) in purple). The FINN fire emissions are additionally 

given amplified by a factor of ten to visualize their seasonal structure. 

 

Fig. S6. Seasonal timing of gross carbon fluxes among the selected TRENDY models. (A), 

Gross primary production (GPP, green) and total respiration (TER, light-blue) for the semi-arid 

parts of Australia (see map Fig. S3) for the selection of TRENDY DGVMs that replicate the end-

of-dry-season CO2 pulses. NBP is shown in black in the lower part (grey shading indicates the 

standard deviation among the model subset). (B), Same as panel (A) but for the parts of Australia 

which are not semi-arid. 
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Fig. S7. Local data from OzFlux eddy covariance flux towers. (A)-(C) Daily mean net carbon 

fluxes (FC in green), precipitation (blue) and soil moisture (red dashed) measured by OzFlux 

stations for periods illustrating local correlations between moisture supply and CO2 fluxes. (A) 

Station record Daly Uncleared (67). (B) Station record Dry River (68). (C) Station record Alice 

Springs Mulga (69) (ASM). The locations of the stations are given in Fig. S3. 
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Table S1. Summary of datasets. 

Description Dataset Resolution References 

GOSAT XCO2 GOSAT/RemoTeC v2.4.0 10.5 km footprint (34) 
  GOSAT/ACOS v9r(Lite) 10.5 km footprint (70) 

Validation XCO2 OCO-2 v10r 1.3×2.3 km footprint (50, 71) 
  TCCON Darwin, Wollongon local (38, 63, 64) 

Model XCO2 TM5 − 4DVARin-situ regional, monthly (41) 
based on in-situ data CarbonTracker CT2019Bin−situ 3°×2°, monthly (51) 

  CAMSin−situ v20r2 3.7°×1.81°, monthly (40, 52, 53) 

Inverse Modelin−situ TM5 − 4DVARin−situ regional, monthly (41) 
  CarbonTracker CT2019Bin−situ 1°×1°, monthly (51) 

  CAMSin−situ v20r2 3.7°×1.81°, monthly (40, 52, 53) 

Inverse Model+GOSAT TM5-4DVAR/RemoTeC regional, monthly (41) 
  TM5-4DVAR/ACOS regional, monthly (41) 

FLUXCOM FLUXCOM NEE 0.08°×0.08°, 8-days (18, 20) 
+ GFED GFED v4.1s 0.25°×0.25°, monthly (72) 

TRENDYselection JSBACH S3 1.86°x1.88° 1) (73) 
  CLASSIC S3 2.80°x2.81° 1) (74) 

  LPJ S3 0.5°x0.5° 1) (75) 

  YIBs S3 1°x1° 1) (76) 

  OCN S3 1°x1° 1) (77) 

TRENDYothers ORCHIDEE-CNP S3 2°x2° 1) (78) 
  ORCHIDEE S3 0.5°x0.5° 1) 

(79) 
  ORCHIDEEv3 S3 2°x2° 1) 

(80) 
  CABLE-POP S3 1°x1° 1) (81) 

  CLM5.0 S3 0.94°x1.25° 1) (82) 

  DLEM S3 0.5°x0.5° 1) (83) 

  IBIS S3 1°x1° 1) (84) 

  ISAM S3 0.5°x0.5° 1) (85) 

  ISBA-CTRIP S3 1°x1° 1) (86) 

  JULES-ES-1.0 S3 1.25°x1.88° 1) (87) 

  LPX-Bern S3 0.5°x0.5° 1) (88) 

  SDGVM S3 1°x1° 1) (89) 

  VISIT S3 0.5°x0.5° 1) (90) 

precipitation ERA5-land data 1°×1°, monthly (61, 62) 
  total precipitation    

1) all TRENDY model data is provided in monthly temporal resolution 

The main characteristics and references of the observation and model data are listed. Links to the data-sets are provided 

in the ’Availability of data and materials’ section. 

 

Table S2. Seasonal and interannual variability of CO2 flux datasets. 
Ensembles Mean Amplitude 

[TgC/month] 
Relative Amplitude Standard Deviation 

[TgC/month] 
IAV [TgC/a] 

Inv. Model+GOSAT 172.00 1 46.52 233.26 

Inv. Modelin-situ  93.17 0.54 11.05 48.04 
TRENDYall 85.40 0.50 20.09 210.17 

TRENDYselection 122.95 0.71 30.51 236.03 
TRENDYothers 104.83 0.61 27.00 201.15 

FLUXCOM+GFED 64.09 0.37 15.85 157.45 
GFED 21.82 0.13 10.16  

July-to-June peak-to-peak amplitude of NBP (mean in TgC/month, relative w.r.t. the GOSAT inversions, standard 

deviation in TgC/month over the 2009 to 2018 period) and NBP interannual variations (IAV) (standard deviation in 

TgC/a over the 2009 to 2018 period) for the datasets used. 
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