Tamed stability of finite difference schemes for the transport equation on the half-line - Archive ouverte HAL
Article Dans Une Revue Mathematics of Computation Année : 2023

Tamed stability of finite difference schemes for the transport equation on the half-line

Résumé

In this paper, we prove that, under precise spectral assumptions, some finite difference approximations of scalar leftgoing transport equations on the positive half-line with numerical boundary conditions are $\ell^1$-stable but $\ell^q$-unstable for any $q > 1$. The proof relies on the accurate description of the Green's function for a particular family of finite rank perturbations of Toeplitz operators whose essential spectrum belongs to the closed unit disk and with a simple eigenvalue of modulus 1 embedded into the essential spectrum.
Fichier principal
Vignette du fichier
Coeuret2023_IBVP.pdf (5.07 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04059973 , version 1 (05-04-2023)

Identifiants

Citer

Lucas Coeuret. Tamed stability of finite difference schemes for the transport equation on the half-line. Mathematics of Computation, In press, ⟨10.1090/mcom/3901⟩. ⟨hal-04059973⟩
138 Consultations
106 Téléchargements

Altmetric

Partager

More