Tamed stability of finite difference schemes for the transport equation on the half-line
Résumé
In this paper, we prove that, under precise spectral assumptions, some finite difference approximations of scalar leftgoing transport equations on the positive half-line with numerical boundary conditions are $\ell^1$-stable but $\ell^q$-unstable for any $q > 1$. The proof relies on the accurate description of the Green's function for a particular family of finite rank perturbations of Toeplitz operators whose essential spectrum belongs to the closed unit disk and with a simple eigenvalue of modulus 1 embedded into the essential spectrum.
Origine | Fichiers produits par l'(les) auteur(s) |
---|