Statistical models for the dynamics of heavy particles in turbulence
Résumé
When very small particles are suspended in a fluid in motion, they tend to follow the flow. How such tracer particles are mixed, transported, and dispersed by turbulent flow has been successfully described by statistical models. Heavy particles, with mass densities larger than that of the carrying fluid, can detach from the flow. This results in preferential sampling, small-scale fractal clustering, and large collision velocities. To describe these effects of particle inertia, it is necessary to consider both particle positions and velocities in phase space. In recent years, statistical phase-space models have significantly contributed to our understanding of inertial-particle dynamics in turbulence. These models help to identify the key mechanisms and non-dimensional parameters governing the particle dynamics, and have made qualitative, and in some cases quantitative predictions. This article reviews statistical phase-space models for the dynamics of small, yet heavy, spherical particles in turbulence. We evaluate their effectiveness by comparing their predictions with results from numerical simulations and laboratory experiments, and summarise their successes and failures. Annu. Rev. Fluid Mech. 56: In press. DOI: 10.1146/annurev-fluid-032822-014140.