Koszul duality for Coxeter groups
Résumé
We construct a "Koszul duality" equivalence relating the (diagrammatic) Hecke category attached to a Coxeter system and a given realization to the Hecke category attached to the same Coxeter system and the dual realization. This extends a construction of Beilinson-Ginzburg-Soergel and Bezrukavnikov-Yun in a geometric context, and of the first author with Achar, Makisumi and Williamson. As an application, we show that the combinatorics of the "tilting perverse sheaves" considered in arXiv:1802.07651 is encoded in the combinatorics of the canonical basis of the Hecke algebra of (W,S) attached to the dual realization.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Licence |