Pré-Publication, Document De Travail Année : 2023

Online stochastic Newton methods for estimating the geometric median and applications

Résumé

In the context of large samples, a small number of individuals might spoil basic statistical indicators like the mean. It is difficult to detect automatically these atypical individuals, and an alternative strategy is using robust approaches. This paper focuses on estimating the geometric median of a random variable, which is a robust indicator of central tendency. In order to deal with large samples of data arriving sequentially, online stochastic Newton algorithms for estimating the geometric median are introduced and we give their rates of convergence. Since estimates of the median and those of the Hessian matrix can be recursively updated, we also determine confidences intervals of the median in any designated direction and perform online statistical tests.
Fichier principal
Vignette du fichier
main.pdf (1.24 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04053240 , version 1 (31-03-2023)

Identifiants

Citer

Antoine Godichon-Baggioni, Wei Lu. Online stochastic Newton methods for estimating the geometric median and applications. 2023. ⟨hal-04053240⟩
70 Consultations
42 Téléchargements

Altmetric

Partager

More