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Abstract

In the context of large samples, a small number of individuals might spoil basic statistical
indicators like the mean. It is difficult to detect automatically these atypical individuals, and an
alternative strategy is using robust approaches. This paper focuses on estimating the geometric
median of a random variable, which is a robust indicator of central tendency. In order to deal with
large samples of data arriving sequentially, online stochastic Newton algorithms for estimating
the geometric median are introduced and we give their rates of convergence. Since estimates
of the median and those of the Hessian matrix can be recursively updated, we also determine
confidences intervals of the median in any designated direction and perform online statistical
tests.

Keywords: Geometric median; stochastic Newton algorithm; online estimation, stochastic optimiza-
tion

1 Introduction

Large samples of observations are now commonplace due to advancements in measurement
technology and improved computer storage capabilities. In such a large sample context, even a
small number of individuals might spoil basic statistical indicators like the mean. Detecting au-
tomatically these atypical individuals is difficult, and adopting robust approaches is an appealing
alternative. It is well known that the median is a robust indicator of central tendency, and here we
concentrate on the geometric median of a random variable in Rp. The geometric median, also called
spatial median or multivariate L1 median, is firstly introduced in [9] and [13]. It is defined as the min-
imizer of L1 distances to observations of a random variable. It has nice robustness properties such
as a breakdown point at 0.5 [16, 14].

Recently, the geometric median attached more attention in the field of machine learning. For
example, in [17], authors proposed a L1 median filter as a tool of their mesh denoising method,
which helps their model to preserve geometric features; an optimization algorithm of section line
extraction was established based on geometric median [20], the author considered the geometric
median because it has the characteristics of noise immunity; an image filtering algorithm [7] has
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been proposed based on a spatial median filter, which shows better performances than mean filters,
since the median is more robust than the mean when noisy pixels are present in the image.

In this paper, we focus on the estimation of the geometric median. An iterative algorithm called
Weiszfeld’s algorithm has been developed [19, 12, 18], and the method has been improved in [1].
The algorithm is simple and fast, but the procedure is not adapted in the case where data are
acquired sequentially from files too large to be loaded into memory. To overcome this, and since the
geometric median is defined as the minimizer of a convex function, an averaged stochastic gradient
algorithm for estimating the geometric median has been proposed in [6]. However, as a first-order
algorithm, in practice it can be very sensitive to the Hessian structure of the function to minimize
[2, 3].

In order to overcome this, we propose here new stochastic Newton type algorithms for estimating
the geometric median. One difficulty encountered by stochastic Newton algorithms is the update
of the inverse of the Hessian estimates. Our recursive estimation of the inverse of the Hessian is
based on the Sherman-Morrison formula [8], which avoids an expensive inverse matrix calculation.
In order to overcome possible initialization problems, we also propose a weighted averaged version
[3]. Thanks to the asymptotic efficiency of the algorithms, and since one can recursively estimate
the covariance matrix, we introduce online confidence intervals of the geometric median in a chosen
direction and to perform online statistical hypothesis tests.

The paper is organized as follows: we describe the general framework and explain the method
for estimating recursively the inverse of the Hessian in Section 2. In Section 3 we present stochastic
Newton algorithms and we state their rates of convergence. A simulation study for comparing the
performances of different algorithms is also given. Section 4 is devoted to establishing recursive
confidence intervals and performing online statistical tests for the geometric median. The proofs are
gathered in Section 5.

2 Framework

2.1 General framework

The geometric median m of a random variable X taking values in Rp is the minimizer of the
convex function G : Rp −→ R defined for all h ∈ Rp by [13]

G(h) =: E [g(X,h)] = E [‖X − h‖ − ‖X‖] .

Note that this definition does not assume the uniqueness of the median or the existence of the first
order moment of ‖X‖. From now on we suppose that following assumptions are fulfilled.

• Assumption 1. The random variable X is not concentrated around single points : there exists
C6 > 0 such that for all h ∈ Rp,

E
[

1

‖X − h‖6

]
≤ C6.

• Assumption 2. The random variable X is not concentrated on a straight line : for all h ∈ Rp,
there exists h′ ∈ Rp such that 〈h, h′〉 6= 0 and

Var

[
〈X,h′〉

]
> 0.
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Note that in Assumption 1, the order is usually obtained to be 2 in the literature [6], and we increase
the order to 6 for technical reasons, i.e. it is used to obtain the convergence rate of the Hessian’s
estimates that will be presented later. According to [14], Assumption 2 ensures that the function
G is strictly convex, so that the median m is uniquely defined. As shown in [6], the function G is
differentiable everywhere, and one can check that the gradient is defined for all h ∈ Rp by:

∇G(h) = −E
[
X − h
‖X − h‖

]
.

Moreover, the function G is twice differentiable everywhere and its Hessian is given by [15]

∇2G(h) = E
[

1

‖X − h‖

(
Ip −

(X − h)(X − h)T

‖X − h‖2

)]
.

According to [6],∇2G(h) is positive definite under Assumptions 1 and 2. This is of particular interest
to stochastic Newton type algorithms for estimating the geometric median, in which the information
given by the Hessian matrix of the function G will be taken into account.

2.2 Some recalls on the averaged stochastic gradient algorithm

An averaged stochastic gradient algorithm has been proposed in [6] for estimating the geometric
median. Given X1, X2, . . . , Xn, Xn+1, . . . ,, i.i.d copies of X, the stochastic gradient algorithm is
given by

m
(SG)
n+1 = m(SG)

n + γn
Xn+1 −m(SG)

n∥∥∥Xn+1 −m(SG)
n

∥∥∥ , (1)

where γn is a sequence of descent steps. Its averaged version consists of averaging all the esti-
mated past values, which is defined recursively by

mn+1 = mn +
1

n+ 1

(
m

(SG)
n+2 −mn

)
(2)

with m(SG)
0 bounded and m0 = m

(SG)
0 . Thus, the estimation can be easily updated. This algorithm

has been deeply studied: its asymptotic efficiency is given in [6], while the Lp rates are derived
in [10]. Moreover, the non-asymptotic behavior of this algorithm has also been studied in [4] by
giving non-asymptotic confidence balls based on the derivation of improved L2 rates of convergence.
However, it’s a first-order algorithm and thus can be very sensitive to the structure of Hessian of the
function we try to minimize [3], which means here that the random variable X is fairly concentrated
towards a straight line for instance.

2.3 How to estimate the inverse of the Hessian

We will then focus on Newton type methods, which is more adapted to deal with ill-conditioned
problems. A major difficulty encountered by stochastic Newton algorithm is that we must be able
to update the inverse of the Hessian estimate with a cost, in terms of computation time, as low as
possible. We explain now how to estimate the inverse of the Hessian ∇2G(m) in a recursive way
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when m is known. The idea is to obtain an estimate of the form 1
n

∑n
k=1 akφkφ

T
k to apply Riccati’s

formula [8]. We have

∇2g(X,h) =
1

‖X − h‖

(
Ip −

(X − h)(X − h)T

‖X − h‖2

)
.

Note that
(
Ip − (X−h)(X−h)T

‖X−h‖2

)2
= Ip − (X−h)(X−h)T

‖X−h‖2 , we then have

∇2g(X,h) = ‖X − h‖ (∇2g(X,h))2. (3)

In addition, according to Taylor’s theorem,

∇g(X,h+ αZ)−∇g(X,h) =

∫ 1

0
∇2g(X,h+ tαZ)dtαZ,

where Z ∼ N (0, Ip) and α > 0. Therefore, an estimate of ∇2G(m) is given by

Ĥn =
1

n+ 1

(
n∑
k=1

‖Xk −m‖
α2
k

ΦkΦ
T
k +H0

)
, (4)

where αk = 1
k ln (k+1) , H0 = Ip and Φk is defined by

Φk := ∇g(Xk,m+ αkZk)−∇g(Xk,m) =

∫ 1

0
∇2g(Xk,m+ tαkZk)dtαkZk,

where (Zk)k are standard independent Gaussian vectors for any k ≥ 1. Indeed, one can check

that E
[
‖Xk−m‖

α2
k

ΦkΦ
T
k

]
→ ∇2G(m). In addition, with the help of Riccati’s formula [8], H−1n+1 =

(n+ 1)−1Ĥ−1n can be easily updated as

H−1n+1 = H−1n −
‖Xn+1 −m‖

α2
n+1

(
1 +
‖Xn+1 −m‖

α2
n+1

φTn+1H
−1
n φn+1

)−1
H−1n φn+1φ

T
n+1H

−1
n .

Thus, knowing m, we are able to estimate recursively the inverse of the Hessian with complexity
O
(
p2
)

(instead of O
(
p3
)
) for each iteration.

3 Stochastic Newton methods

In this section we introduce two stochastic Newton methods for estimating the median m : a
stochastic Newton algorithm and its weighted averaged version. We also give theoretical guarantees
on their convergence. We recall that (Xn)n≥1 is a sequence of independent random vectors, of same
distribution as vector X and (Zn)n≥1 is a sequence of independent standard Gaussian vectors.
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3.1 Stochastic Newton algorithm

3.1.1 Definition of the algorithm

We now introduce stochastic Newton estimates, defined recursively for all n ≥ 0 by

mn+1 = mn +
1

n+ 1
H̃−1n

Xn+1 −mn

‖Xn+1 −mn‖
, (5)

where m0 is bounded. Let (β̃n)n≥1 be the strictly positive sequence of real numbers defined for any
n ≥ 1 by β̃n =

cβ
nβ

with 0 < β < 1
2 and cβ > 0. The matrix H̃n is given for any n ≥ 0 by

H̃n = Hn +
1

n+ 1

n∑
k=1

β̃kZkZ
T
k , (6)

where Hn is the recursive estimate of the Hessian ∇2G(m) defined by

Hn =
1

n+ 1

(
n∑
k=1

‖Xk −mk−1‖
α2
k

φkφ
T
k +H0

)
,

with for any k ≥ 1, φk = ∇g(Xk,mk−1 + αkZk) − ∇g(Xk,mk−1), αk = 1
k ln (k+1) and H0 is

symmetric positive. We add the term
∑n

k=1 β̃kZkZ
T
k in order to control the eigenvalues of the

Hessian estimate (see Section 5), which is necessary to obtain the convergence of the algorithm [3].
Thanks to Riccati’s formula [8] , H−1n = (n+ 1)−1H

−1
n can be updated in two steps, leading to

H−1n+1/2 = H−1n −
‖Xn+1 −mn‖

α2
n+1

(
1 +
‖Xn+1 −mn‖

α2
n+1

φTn+1H
−1
n φn+1

)−1
H−1n φn+1φ

T
n+1H

−1
n ,

H−1n+1 = H−1n+1/2 − β̃k
(

1 + β̃kZ
T
n+1H

−1
n+1/2Zn+1

)−1
H−1n+1/2Zn+1Z

T
n+1H

−1
n+1/2.

Therefore, this algorithm allows us to update the estimation of the Hessian matrix and the estimation
of the geometric median in a recursive way.

3.1.2 Convergence results

The following theorem gives the almost sure rates of convergence as well as the asymptotic effi-
ciency of the stochastic Newton estimates. Note that its asymptotic efficiency allows us to construct
confidence intervals and carry out tests (discussed in Section 4).

Theorem 1 Assume that Assumptions 1 and 2 hold, then the stochastic Newton estimate mn de-
fined by (5) converges almost surely towards m and

‖mn −m‖2 = O
(

lnn

n

)
a.s.

Furthermore, the Hessian estimates defined in (6) satisfy for all δ > 0∥∥∥H̃n −H
∥∥∥2 = O

(
max

{
(lnn)1+δ

n
,
cβ
n2β

})
a.s.
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Finally,
√
n (mn −m)

L−−−−−→
n→+∞

N
(
0, H−1ΣH−1

)
,

where Σ = E
[
∇g(X,m)∇g(X,m)T

]
.

The proof is given in Section 5. Observe that the price to pay in order to control the eigenvalues
of the estimates of the Hessian is a loss in term of rate of convergence of the estimates. More
precisely, it makes appear a term which converges at a rate n−2β instead of n−1.

3.2 Weighted Averaged Stochastic Newton Algorithm

3.2.1 Definition of the algorithm

In order to improve in practice the behavior of the estimates in case of bad initializations, we now
introduce a Weighted Averaged Stochastic Newton algorithm (WASN) [3] defined recursively for all
n ≥ 0 by:

m̂n+1 = m̂n +
cγ(

n+ 1 + c′γ
)γ H̃−1n,τ Xn+1 − m̂n

‖Xn+1 − m̂n‖
(7)

mn+1,τ = (1− τn+1)mn,τ + τn+1m̂n+1, (8)

where cγ > 0, c′γ ≥ 0 and γ ∈
(
1
2 , 1
)
. The weighted averaging sequence (τn)n≥1 is chosen of

the following way : τn = ln(n+1)ω∑n
k=0 ln(k+1)ω

for any n ≥ 0 and ω ≥ 0. Notice that the case where
ω = 0 corresponds to the averaged stochastic Newton algorithm (ASN). The recursive estimate of
the Hessian is defined by :

H̃n,τ =
1

n+ 1

(
n∑
k=1

‖Xk −mk−1,τ‖
α2
k

φk,τφ
T
k,τ +H0

)
+

1

n+ 1

n∑
k=1

β̃kZkZ
T
k . (9)

where for any k ≥ 1, φk,τ = ∇g(Xk,mk−1,τ + αkZk) − ∇g(Xk,mk−1,τ ). In order to control the
eigenvalue of H̃n,τ , (β̃n)n≥1 should be the sequence of real numbers defined by β̃n =

cβ
n1−β with

0 < β < γ − 1
2 and cβ > 0. Following the same procedure as for the stochastic Newton algorithm,

we can always update H−1n,τ = (n+ 1)−1H
−1
n,τ with Riccati’s formula [8].

3.2.2 Convergence results

The following theorem shows that under identical assumptions, the WASN estimates are still
asymptotically efficient.

Theorem 2 Suppose Assumptions 1 and 2 hold, then the Weighted Averaged Stochastic Newton
estimates m̂n and mn, τ converge almost surely towards m. In addition,

‖m̂n −m‖2 = O
(

lnn

nγ

)
a.s. and ‖mn,τ −m‖2 = O

(
lnn

n

)
a.s.
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Furthermore, the Hessian estimate defined by (9) satisfies for all δ > 0∥∥∥H̃n,τ −H
∥∥∥2 = O

(
max

{
(lnn)1+δ

n
,
cβ
n2β

})
a.s.

Finally,
√
n (mn,τ −m)

L−−−−−→
n→+∞

N
(
0, H−1ΣH−1

)
,

where Σ = E
[
∇g(X,m)∇g(X,m)T

]
.

The proof is given in Section 5.

3.3 Comparison of the methods

We perform a numerical experiment in order to compare the performances of the Stochastic
Newton algorithm (SN), the Averaged Stochastic Newton algorithm (ASN), the Weighted Averaged
stochastic Newton Algorithm (WASN) and the averaged stochastic gradient descent (ASGD) pro-
posed in [6]. For WASN, we choose τn = ln(n+1)2∑n

k=0 ln(k+1)2
. In this experiment, we generate samples of

Gaussian random vector X ∼ N (0p,Σ) with p = 10, and we consider two structures of covariance
matrix Σ defined by

(i) Σij = 0.5|i−j|;

(ii) Σ is diagonal with Σ1,1 = 1000 and Σi,i = 1 for i 6= 1.

To evaluate the performances of algorithms, we compute the following mean squared error:

MSE(m̂) = E
[
‖m− m̂‖2

]
,

where m̂ is an estimate of the median. We estimate this error through Monte-Carlo experiments with
N = 400 samples, for each sample we generate n = 15000 copies of X. In order to see the impact
of the initialization of m̂, we consider four different initializations : m0 = rU with U ∼ Np (0, Ip) and
r = 1, 5, 10 or 15.

r=10 r=15

r= 1 r= 5

1 10 100 1000 10000 1 10 100 1000 10000

1e−02

1e+00

1e+02

1e−02

1e+00

1e+02

Sample size

M
ea

n 
sq

ua
re

d 
er

ro
r

WASN ASN SN ASGD

Figure 1: Evolution of the mean squared error with respect to the sample size for structure (i).
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Considering the structure (i), the performances of four algorithms are identical for a good initial-
ization. However, when initialization get worse, we can see that second order methods converge
faster than ASGD.

r=10 r=15

r= 1 r= 5

1 10 100 1000 10000 1 10 100 1000 10000

1e−01

1e+00

1e+01

1e+02

1e+03

1e−01

1e+00

1e+01

1e+02

1e+03

Sample size

M
ea

n 
sq

ua
re

d 
er

ro
r

WASN ASN SN ASGD

Figure 2: Evolution of the mean squared error with respect to the sample size for structure (ii).

When considering the structure (ii), we observe that the Newton type algorithms perform much
better than ASGD. Even with a good initialization, the convergence of ASGD is clearly slower than
WASN, ASN and SN. Thus ASGD is more sensitive to the structure of the Hessian. Note that for
bad initializations, WASN estimators seem to achieve converge faster, and that this phenomenon
can be accentuated in the case of even worse conditioned problems, i.e. for even worse Hessian
structures [3].

4 Confidence intervals and tests

In this section, we shall propose confidende intervals and statistical tests for the median. These
results are obtained from Theorems 1 and 2, and therefore require recursive estimates of the co-
variance matrix Σ defined by

Σ = E
[
∇g(X,m)∇g(X,m)T

]
supposed here positive. In the sequel of the section, m̃n will denote any asymptotically efficient
estimate of the geometric median. For example, m̃n can be the ASGD estimate defined by (2), or
the SN estimate defined by (5), or the WASN estimate defined by (8).

4.1 Estimating the covariance

A natural recursive estimate of Σ is given by

Σn =
1

n+ 1

(
n∑
k=1

(Xk − m̃k−1)

‖Xk − m̃k−1‖
(Xk − m̃k−1)

T

‖Xk − m̃k−1‖
+ Σ0

)
,
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where Σ0 is symmetric positive. As well as for Hn, the Riccati’s formula ([8]) allows us to recursively
update matrix W−1n+1 = (n+ 1)−1Σ

−1
n :

W−1n+1 = W−1n −

1 +

(
X̃n+1

)T∥∥∥X̃n+1

∥∥∥ W−1n

(
X̃n+1

)
∥∥∥X̃n+1

∥∥∥

−1

W−1n

(
X̃n+1

)
∥∥∥X̃n+1

∥∥∥
(
X̃n+1

)T∥∥∥X̃n+1

∥∥∥ W−1n , (10)

where X̃n+1 := Xn+1 − m̃n. This property will be of particular interest to build online tests (see
section 4.2). The following theorem gives the rate of convergence of Σn.

Theorem 3 Let m̃n be an estimate defined by (2), (5) or (8). Suppose Assumptions 1 and 2 hold,
then for any δ > 0, ∥∥Σn − Σ

∥∥2 = o

(
(lnn)1+δ

n

)
a.s.

The proof is given in section 5.

4.2 Confidence intervals and statistical hypothesis tests

Let us recall that under Assumptions 1 and 2

√
n (m̃n −m)

L−−−−−→
n→+∞

N
(
0, H−1ΣH−1

)
.

Thus, we have for any x0 ∈ Rp\{0}
√
n√

xT0 S
−1
n ΣnS

−1
n x0

(
xT0 m̃n − xT0m

) L−−−−−→
n→+∞

N (0, 1) ,

where

Sn =
1

n+ 1

(
n∑
k=1

‖Xk − m̃k−1‖
α2
k

φ̃kφ̃
T
k + S0

)
,

with S0 symmetric positive, (Zk)k standard independent Gaussian vectors, and φ̃k defined by φ̃k =

∇g(Xk, m̃k−1 +αkZk)−∇g(Xk, m̃k−1). As S
−1
n and Σn can be recursively calculated (see Section

3.1.1 for the update of S
−1
n ), we can then compute an online confidence interval of xT0m, which

means that we can determine the confidence interval of the median in any designated direction.
Moreover, since m̃n is asymptotically efficient, one has

n (m̃n −m)T H
∗
nΣ
−1
n H

∗
n (m̃n −m)

L−−−−−→
n→+∞

X 2
p ,

where

H
∗
n =

1

n+ 1

(
n∑
k=1

1

‖Xk − m̃k−1‖

(
Ip −

(Xk − m̃k−1)(Xk − m̃k−1)
T

‖Xk − m̃k−1‖2

)
+H

∗
0

)
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with H
∗
0 symmetric positive. Thus H

∗
n can be computed in a recursive way. Recall that Σ

−1
n can also

be recursively updated with (10), so that we can perform an online statistical hypothesis test with
significance level α ∈ (0, 1) : H0 : ”m = mtest” versus H1 : ”m 6= mtest”. We calculate the test
statistic Zn by

Zn = n (m̃n −mtest)
T H

∗
nΣ
−1
n H

∗
n (m̃n −mtest) ,

and we reject the null hypothesis if Zn > ζ1−α,p, where ζ1−α,p is the quantile of order 1 − α of the
chi-squared distribution with p degrees of freedom.

4.3 Simulations

We now evaluate performances of the different algorithms by studying the empirical levels under
H0. To this aim, we generate samples of size n = 3000 of a Gaussian random vector X ∼ N (0p,Σ)
with p = 10, where we consider two structures of the covariance matrix Σ defined in Section 3.3.
We compute the empirical levels through experiments with N = 1000 samples. We consider two
different initializations : m0 = rU with U ∼ Np (0, Ip) and r = 1 or 5.

Structure of Σ m0 Algorithm Empirical level (%)

(i)

U

WASN 6.1
ASN 5.2
SN 5.8

ASGD 6.3

5U

WASN 5.9
ASN 10.7
SN 5.4

ASGD 23.0

(ii)

U

WASN 18.9
ASN 16.8
SN 44.3

ASGD 56.8

5U

WASN 19.1
ASN 22.0
SN 50.4

ASGD 97.2

Table 1: Empirical levels achieved by different algorithms under H0

The performance of WASN is noticeable, it gives lower empirical level and closer to the 5%
theoretical level even ifm0 is not well initialized. Same as what we observed in previous experiments,
the algorithm ASN is sensitive to the initializations. We can also observe that the empirical level
achieved by ASGD is the highest in every considered case. In general, proposed second-order
methods achieve better results than ASGD, and the improvements are more significant in the case
where we consider the structure (ii).

In addition, as the statistic test has a chi-squared limit distribution under the null hypothesis,
we are now interested in the closeness between the simulated distribution of the test statistic and
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the theoretical distribution. For this purpose, we plot the estimated probability densities obtained
from different algorithms and the chi-square probability density. We can see that with second-order
estimates, the estimated distributions are closer to the theoretical distribution, especially with WASN
estimates.

0.000

0.025

0.050

0.075

0.100

0 10 20 30
r=1, structure (i)

de
ns

ity

0.000

0.025

0.050

0.075

0.100

0 10 20 30
r=5, structure (i)

de
ns

ity

0.000

0.025

0.050

0.075

0.100

0 10 20 30
r=1, structure (ii)

de
ns

ity

0.000

0.025

0.050

0.075

0.100

0 10 20 30
r=5, structure (ii)

de
ns

ity

WASN ASN SN ASGD Chi−Squared probability density

Figure 3: Simulated distributions of the test statistic and the theoretical distribution under H0

5 Proofs

In the following, ‖·‖ indicates the Euclidean norm for vectors or the spectral norm for matrices.

5.1 Proof of Theorems 1 and 2

Remark that the proofs of Theorems 1 and 2 are very close. We therefore give the proof of
Theorem 1 and just highlight differences with the help of remarks. Our objective is to apply Theorem
3.3 (or Theorem 4.3) in [3]. To do so, we are going to verify that the hypotheses given in [3], termed
(A1b), (A1c), (A2a), (A2b), (A2c), (H1), (H2a) and (H2b) are satisfied.

5.1.1 Verification of conditions on the function to minimize

First we are going to verify the hypotheses that the function should be met.

Verification of (A1a). Assumption 1 ensures that the median m is the unique solution (see [14]
and [6]) of the equation

∇G(h) = 0,

so that Hypothesis (A1a) is satisfied.

Verification of (A1b). Recall that ∇g(X,h) = − X−h
‖X−h‖ , so that for all h ∈ Rp,

‖∇g(X,h)‖ ≤ 1,

Hypothesis (A1b) is then satisfied.

11



Verification of (A1c). We have for all h ∈ Rp

Σ(h) = E
[
∇g(X,h)∇g(X,h)T

]
= E

[
(X − h)(X − h)T )

‖X − h‖2

]
.

The function Σ is continuous on Rp, thus Hypothesis (A1c) is satisfied.

Verification of (A2a). For all h ∈ Rp,

∥∥∇2G(h)
∥∥ ≤ E

[
1

‖X − h‖

∥∥∥∥Ip − (X − h)(X − h)T )

‖X − h‖2

∥∥∥∥] ≤ E
[

1

‖X − h‖

]
,

and Assumption 1 ensures that

E
[

1

‖X − h‖

]
≤ C

1
6
6 ,

so that Hypothesis (A2a) is satisfied.

Verification of (A2b). Under Assumption 1 and Assumption 2, for all h ∈ Rp the Hessian ∇2G(h)
is positive definite (see Section 2.2 in [6]), thus Hypothesis (A2b) is satisfied.

Verification of (A2c). Under Assumption 1, the Hessian ∇2G(h) is 6C
1
3
6 -Lipschitz (see Lemma

1), so that Hypothesis (A2c) is satisfied.

5.1.2 Controllability of eigenvalues of the Hessian estimator and consistency

Verification of (H1). We are going to verify if eigenvalues of the Hessian estimator are well con-
trolled. We recall that

H̃n = Hn +
1

n+ 1

n∑
k=1

β̃kZkZ
T
k ,

with β̃k =
cβ
kβ

where 0 < β < 1
2 and cβ > 0.

Remark 5.1 For WASN the condition on β should be β < γ − 1
2 instead of β < 1

2 .

Thus we have

λmin(H̃n) ≥ λmin (H0)

n+ 1
+

1

n+ 1
λmin

(
n∑
k=1

β̃kZkZ
T
k

)
.

In addition, (
cβ

1− β
n1−β

)−1 n∑
k=1

β̃kZkZ
T
k

a.s.−−−−−→
n→+∞

Ip,
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so that λmax
(
H̃−1n

)
= O

(
nβ
)
. For the largest eigenvalue of Hn, we have

∥∥Hn

∥∥ ≤ 1

n+ 1

n∑
k=1

‖Xk −mk−1‖
α2
k

‖φk‖2 +
1

n+ 1
‖H0‖

=
1

n+ 1

n∑
k=1

‖Xk −mk−1‖
α2
k

‖∇g(Xk,mk−1)−∇g(Xk,mk−1 + αkZk)‖2 +
1

n+ 1
‖H0‖

=
1

n+ 1

n∑
k=1

‖Xk −mk−1‖
α2
k

∥∥∥∥ Xk −mk−1
‖Xk −mk−1‖

− Xk − (mk−1 + αkZk)

‖Xk − (mk−1 + αkZk)‖

∥∥∥∥2 +
1

n+ 1
‖H0‖ .

Since
∥∥∥ C−A
‖C−A‖ −

B−A
‖B−A‖

∥∥∥ ≤ 2‖C−B‖‖B−A‖ (see [5] page 25), we have

∥∥Hn

∥∥ ≤ 4

n+ 1

n∑
k=1

‖Xk −mk−1‖
α2
k

∥∥∥∥ αkZk
‖Xk −mk−1‖

∥∥∥∥2 +
1

n+ 1
‖H0‖

=
1

n+ 1

n∑
k=1

4 ‖Zk‖2

‖Xk −mk−1‖
+

1

n+ 1
‖H0‖ .

Thanks to Assumption 1, by independence between Zk and Xk and by Hölder’s inequality, we have

E

[
4 ‖Zk‖2

‖Xk −mk−1‖
| Fk−1

]
= 4E

[
‖Zk‖2

]
E
[
‖Xk −mk−1‖−1

]
≤ 4pC

1
6
6 ,

so that
1

n+ 1

n∑
k=1

E

[
4 ‖Zk‖2

‖Xk −mk−1‖
| Fk−1

]
≤ 4pC

1
6
6 .

Moreover, with analogous calculs, one has

E

( 4 ‖Zk‖2

‖Xk −mk−1‖

)2

| Fk−1

 = 16E
[
‖Zk‖4

]
E
[
‖Xk −mk−1‖−2

]
≤ 16p(p+ 2)C

1
3
6 ,

With the help of law of large numbers for martingales, for all δ > 0,(
1

n

n∑
k=1

4 ‖Zk‖2

‖Xk −mk−1‖
− E

[
4 ‖Zk‖2

‖Xk −mk−1‖
| Fk−1

])2

= o

(
(lnn)1+δ

n

)
a.s.

Thus,

∥∥Hn

∥∥ ≤ ∥∥∥∥∥ 1

n+ 1

n∑
k=1

E

[
4 ‖Zk‖2

‖Xk −mk−1‖
| Fk−1

]∥∥∥∥∥+

∥∥∥∥∥ 1

n+ 1

n∑
k=1

4 ‖Zk‖2

‖Xk −mk−1‖
− E

[
4 ‖Zk‖2

‖Xk −mk−1‖
| Fk−1

]∥∥∥∥∥
+

1

n+ 1
‖H0‖

= O(1) a.s.
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Then, ∥∥∥H̃n

∥∥∥ ≤ ∥∥Hn

∥∥+
1

n+ 1

n∑
k=1

β̃k = O(1) a.s.

The largest eigenvalue of H̃−1n and H̃n can be controlled, according to Theorem 3.1 in [3], the
stochastic Newton estimator satisfies

mn
a.s.−−−−−→

n→+∞
m.

Remark 5.2 For WASN, according to Theorem 4.1 in [3], the estimator m̂n converges almost surely
to m, which implies the almost sure convergence of mn,τ .

5.1.3 Convergence of the Hessian estimator and rate of convergence

Verification of (H2a). We verify now if the Hessian estimator converges towards ∇2G(m). We
define

Xk,t := Xk − (mk−1 + tαkZk),

and

wk,t :=
1

‖Xk,t‖

(
Ip −

Xk,tX
T
k,t

‖Xk,t‖2

)
.

We then have

Hn =
1

n+ 1

n∑
k=1

‖Xk −mk−1‖
α2
k

∫ 1

0
wk,tdtαkZkαkZ

T
k

∫ 1

0
wk,tdt+

1

n+ 1
H0

=
1

n+ 1

n∑
k=1

‖Xk −mk−1‖
∫ 1

0
wk,tdtZkZ

T
k

∫ 1

0
wk,tdt+

1

n+ 1
H0

=

M1,n︷ ︸︸ ︷
1

n+ 1

n∑
k=1

‖Xk −mk−1‖
∫ 1

0
wk,t − wk,0dtZkZTk

∫ 1

0
wk,tdt

+

M2,n︷ ︸︸ ︷
1

n+ 1

n∑
k=1

‖Xk −mk−1‖wk,0ZkZTk
∫ 1

0
wk,t − wk,0dt

+

M3,n︷ ︸︸ ︷
1

n+ 1

n∑
k=1

‖Xk −mk−1‖wk,0ZkZTk wk,0 +
1

n+ 1
H0

Convergence ofM3,n. We define

Yk := ‖Xk −mk−1‖wk,0ZkZTk wk,0,
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remark that one has

M3,n =
1

n+ 1

n∑
k=1

Yk =
1

n+ 1

n∑
k=1

E [Yk | Fk−1] +
1

n+ 1

n∑
k=1

Yk − E [Yk | Fk−1] .

First we prove that
1

n+ 1

n∑
k=1

E [Yk | Fk−1]
a.s.−−−−−→

n→+∞
∇2G(m).

We have

wk,0 :=
1

‖Xk −mk−1‖

(
Ip −

(
Xk −mk−1
‖Xk −mk−1‖

)(
Xk −mk−1
‖Xk −mk−1‖

)T)
= ∇2g(Xk,mk−1),

so that by equation (3)
‖Xk −mk−1‖w2

k,0 = wk,0.

In addition, as the estimator of the median satisfies

mn
a.s.−−−−−→

n→+∞
m,

we have by continuity
E [wn,0 | Fn−1] = ∇2G(mn)

a.s.−−−−−→
n→+∞

∇2G(m).

Therefore, as {Zk}k are standard independent Gaussian vectors, by law of large numbers, we have

1

n+ 1

n∑
k=1

E [Yk | Fk−1] =
1

n+ 1

n∑
k=1

E
[
‖Xk −mk−1‖w2

k,0 | Fk−1
]

=
1

n+ 1

n∑
k=1

E [wk,0 | Fk−1]
a.s.−−−−−→

n→+∞
∇2G(m).

Moreover, thanks to Assumption 1 and by independence,

E
[
‖Yk‖2 | Fk−1

]
≤ E

[
‖Xk −mk−1‖2 ‖wk,0‖4 ‖Zk‖4 | Fk−1

]
≤ E

[
‖Zk‖4 | Fk−1

]
E

[∥∥∥∥ 1

Xk −mk−1

∥∥∥∥2 | Fk−1
]

≤ p(p+ 2)C
1
3
6 ,

which results in, with the help of law of large numbers for martingales, that for all δ > 0,∥∥∥∥∥ 1

n

n∑
k=1

Yk − E [Yk | Fk−1]

∥∥∥∥∥
2

= o

(
(lnn)1+δ

n

)
.

Thus,
M3,n

a.s.−−−−−→
n→+∞

∇2G(m).
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Convergence of M2,n : In order to get the rate of convergence of M2,n, let us first introduce a
generalization of Lemma 5.1 in [4].

Lemma 1 For all h, h′ ∈ Rp and 0 < q ≤ 3,(
E
[∥∥∇2g(X,h′)−∇2g(X,h)

∥∥q]) 1
q ≤ 6C

1
3
6

∥∥h′ − h∥∥.
In our case, for all t ∈ (0, 1) and q ∈ (0, 3], and considering the filtrationF ′k = σ (X1, . . . , Xk−1, Z1, . . . , Zk),
we have

E [‖wk,t − wk,0‖q |Fk] ≤ 6qC
q
3
6 α

q
k ‖Zk‖

q .

We define

Wk := ‖Xk −mk−1‖wk,0ZkZTk
∫ 1

0
wk,t − wk,0dt.

Then,

‖M2,n‖ ≤
1

n+ 1

n∑
k=1

E [‖Wk‖ | Fk−1] +
1

n+ 1

n∑
k=1

‖Wk‖ − E [‖Wk‖ | Fk−1] .

Remark that

E [‖Wk‖ | Fk−1] ≤ E
[
‖Xk −mk−1‖ ‖wk,0‖ ‖Zk‖2

∥∥∥∥∫ 1

0
wk,t − wk,0

∥∥∥∥ dt | Fk−1]
≤ E

[
‖Zk‖2

∫ 1

0
‖wk,t − wk,0‖ dt | Fk−1

]
= E

[
‖Zk‖2

∫ 1

0
E
[
‖wk,t − wk,0‖ dt | F ′k

]
| Fk−1

]
,

where Fk′ = σ{X1, ..., Xk−1, Z1, ..., Zk}. Therefore, thanks to Lemma 1, we have

E [‖Wk‖ | Fk−1] ≤ 6αkC
1
3
6 E
[
‖Zk‖3 | Fk−1

]
.

Since αk = 1
k ln k+1 , it comes E [‖Wk‖ | Fk−1] = O

(
1

k ln k

)
, which leads to

1

n+ 1

n∑
k=1

E [‖Wk‖ | Fk−1] = O
(

lnn

n

)
a.s.

In addition, according to Lemma 1, and with the help of Hölder’s inequality,

E
[
‖Wk‖2 | Fk−1

]
≤ E

[
‖Zk‖4

(∫ 1

0
‖wk,t − wk,0‖ dt

)2

| Fk−1

]2

≤ E

[
E

[
‖Zk‖4

(∫ 1

0
‖wk,t − wk,0‖ dt

)2

| F ′k

]
| Fk−1

]

≤ E
[
‖Zk‖4

∫ 1

0
E
[
‖wk,t − wk,0‖2 |F ′k

]
dt|Fk−1

]
≤ 36α2

kE
[
‖Zk‖6 | Fk−1

]
C

2
3
6 .
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Thus, with the help of law of large numbers for martingales,∥∥∥∥∥ 1

n

n∑
k=1

Wk − E [‖Wk‖ | Fk−1]

∥∥∥∥∥
2

= o

(
(lnn)1+δ

n

)
a.s.

Therefore, we obtain

M2,n = o

(
(lnn)1+δ

n

)
a.s.

Convergence ofM1,n. We define

Vk := ‖Xk −mk−1‖
∫ 1

0
wk,t − wk,0dtZkZTk

∫ 1

0
wk,tdt.

Remark that

E [‖Vk‖ | Fk−1] ≤ E
[
‖Xk −mk−1‖

∥∥∥∥∫ 1

0
wk,tdt

∥∥∥∥ ‖Zk‖2 ∥∥∥∥∫ 1

0
wk,t − wk,0dt

∥∥∥∥ | Fk−1]
≤ E

[
‖Zk‖2

∫ 1

0

‖Xk,t‖+ tαk ‖Zk‖
‖Xk,t‖

dt

∫ 1

0
‖wk,t − wk,0‖ dt | Fk−1

]
≤ E

[
E
[
‖Zk‖2

(
1 +

∫ 1

0

αk ‖Zk‖
‖Xk,t‖

dt

)∫ 1

0
‖wk,t − wk,0‖ dt | F ′k

]
| Fk−1

]
where F ′k = σ (X1, ..., Xk−1, Z1, ..., Zk). Thus, according to Lemma 1 and Assumption 1, one has
with the help of Hölder’s inequality

E [‖Vk‖ | Fk−1] ≤ E
[
‖Zk‖2

∫ 1

0
E
[
‖wk,t − wk,0‖ |F ′k

]
dt

]

+ E

αk ‖Zk‖3
(∫ 1

0
E

[
1

‖Xk,t‖2
|F ′k

]
dt

) 1
2 (∫ 1

0
E
[
‖wk,t − wk,0‖2 |F ′k

]
dt

) 1
2

|Fk−1


≤ 6αkC

1
3
6 E
[
‖Zk‖3 | Fk−1

]
+ 6α2

kE
[
‖Zk‖4 |Fk−1

]
C

1
2
6 .

We have αk = 1
k ln k+1 , so that E [‖Vk‖ | Fk−1] = O

(
1

k ln k

)
, which leads to

1

n+ 1

n∑
k=1

E [‖Vk‖ | Fk−1] = O
(

lnn

n

)
.

Furthermore, we have by Hölder’s inequality

E
[
‖Vk‖2 | Fk−1

]
≤ E

[
‖Zk‖4

(
1 +

∫ 1

0

αk ‖Zk‖
‖Xk,t‖

dt

)2(∫ 1

0
‖wk,t − wk,0‖ dt

)2

| Fk′ | Fk−1

]

≤ 2E
[
‖Zk‖4

∫ 1

0
‖wk,t − wk,0‖2 dt | Fk−1

]
+ 2α2

kE

[
‖Zk‖6

∫ 1

0

∫ 1

0

1

‖Xk,t‖2
∥∥wk,t′ − wk,0∥∥2 dtdt′ | Fk−1

]
=: (∗)
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and we therefore have, applying Hölder’s inequality,

(∗) ≤ 2E
[
‖Zk‖4

∫ 1

0
E
[
‖wk,t − wk,0‖2 |F ′k

]
dt | Fk−1

]

+ 2α2
kE

‖Zk‖6 ∫ 1

0

∫ 1

0

(
E

[
1

‖Xk,t‖6
|F ′k

]) 1
3 (

E
[∥∥wk,t′ − wk,0∥∥3 |F ′k]) 2

3
dtdt′ | Fk−1

 .
Then, thanks to Assumption 1 and Lemma 1,

E
[
‖Vk‖2 | Fk−1

]
≤ 72α2

kC
2/3
6 E

[
‖Zk‖6

]
+ 72α4

kC6E
[
‖Zk‖8

]
.

With the help of law of large numbers for martingales, one then has∥∥∥∥∥ 1

n

n∑
k=1

Vk − E [Vk | Fk−1]

∥∥∥∥∥
2

= o

(
(lnn)1+δ

n

)
a.s

and

M1,n = o

(
(lnn)1+δ

n

)
a.s.

Finally, we have
Hn

a.s.−−−−−→
n→+∞

∇2G(m).

Notice that

H̃n = Hn +
1

n+ 1

n∑
k=1

β̃kZkZ
T
k ,

and
1

n+ 1

n∑
k=1

β̃kZkZ
T
k

a.s.−−−−−→
n→+∞

0.

Therefore,
H̃n

a.s.−−−−−→
n→+∞

∇2G(m).

According to Theorem 3.2 in [3], the stochastic Newton estimator satisfies

‖mn −m‖2 = O
(

lnn

n

)
a.s.

Remark 5.3 For WASN, according to Theorem 4.2 in [3], we have

‖m̂n −m‖2 = O
(

lnn

nγ

)
a.s., which implies that ‖mn,τ −m‖2 = O

(
lnn

nγ

)
a.s.
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5.1.4 Rate of convergence of the Hessian estimator and asymptotic efficiency

We now give the rate of convergence of H̃n. We recall that

wk,0 :=
1

‖Xk −mk−1‖

(
Ip −

(
Xk −mk−1
‖Xk −mk−1‖

)(
Xk −mk−1
‖Xk −mk−1‖

)T)
,

which means that
E [wk,0 | Fk−1] = ∇2G(mk−1).

Note that ∇2G(h) is 6C
1
3
6 -Lipschitz, so that we have

E
[∥∥wk,0 −∇2G(m)

∥∥2 | Fk−1] =
∥∥∇2G(mk−1)−∇2G(m)

∥∥2 ≤ 6C
1
3
6 ‖mk−1 −m‖2 .

As the estimator satisfies

‖mn −m‖2 = O
(

lnn

n

)
a.s.,

we have ∥∥E [wk,0 | Fk−1]−∇2G(m)
∥∥2 = O

(
ln k

k

)
a.s.

Remark 5.4 For WASN, here we have ‖mn,τ −m‖2 = O
(
lnn
nγ

)
a.s., so that∥∥E [wk,0 | Fk−1]−∇2G(m)

∥∥2 = O
(
ln k
kγ

)
a.s.

Therefore, as {Zk}k are standard independent Gaussian vectors, we have∥∥∥∥∥ 1

n+ 1

n∑
k=1

E [Yk | Fk−1]−∇2G(m)

∥∥∥∥∥
2

= O
(

lnn

n

)
a.s.

We have proved that for all δ > 0∥∥∥∥∥ 1

n

n∑
k=1

Yk − E [Yk | Fk−1]

∥∥∥∥∥
2

= o

(
(lnn)1+δ

n

)
a.s.,

so that ∥∥M3,n −∇2G(m)
∥∥2 = o

(
(lnn)1+δ

n

)
a.s.

Finally, the Hessian estimator satisfies for all δ > 0∥∥∥H̃n −H
∥∥∥2 = O

(
max

{
(lnn)1+δ

n
,
cβ
n2β

})
a.s.

According to Theorem 3.3 in [3], the stochastic Newton estimator satisfies
√
n (mn −m) ∼ N

(
0, H−1ΣH−1

)
,

where Σ = E
[
∇g(X,m)∇g(X,m)T

]
.
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Remark 5.5 For WASN, we have first for all δ > 0∥∥∥H̃n,τ −H
∥∥∥2 = O

(
max

{
(lnn)1+δ

nγ
,
cβ
n2β

})
a.s.

Then according to Theorem 4.3 in [3], we have

‖mn,τ −m‖2 = O
(

lnn

n

)
a.s.,

which results in∥∥∥H̃n,τ −H
∥∥∥2 = O

(
max

{
(lnn)1+δ

n
,
cβ
n2β

})
a.s. and

√
n (mn,τ −m) ∼ N

(
0, H−1ΣH−1

)
.

5.2 Proof of Theorem 3

We define

Tk :=
(Xk − m̃k−1)

‖Xk − m̃k−1‖
(Xk − m̃k−1)

T

‖Xk − m̃k−1‖
,

then one has

Σn =
1

n+ 1

n∑
k=1

Tk +
1

n+ 1
Σ0 =

1

n+ 1

n∑
k=1

E [Tk | Fk−1] +
1

n+ 1

n∑
k=1

Tk −E [Tk | Fk−1] +
1

n+ 1
Σ0.

Note that E [Tk | Fk−1] = Σ(m̃k−1). In addition, we have

Σ(h) = E
[
∇g(X,h)∇g(X,h)T

]
Thus, thanks to Hypothesis (A2c), Σ(h) is 6C

1
6
6 -Lipschitz (see [11] section 6.2), which means

‖E [Tk | Fk−1]− Σ‖2 = ‖Σ(m̃k−1)− Σ(m)‖2 ≤ 6C
1
6
6 ‖m̃k−1 −m‖2 .

As the estimator m̃k satisfies

‖m̃k −m‖2 = O
(

lnn

n

)
a.s.,

we obtain

‖E [Tk | Fk−1]− Σ‖2 = O
(

lnn

n

)
a.s.

Moreover, it is obvious that
E
[
‖Tk‖2 | Fk−1

]
≤ 1,

which leads to, with the help of law of large numbers for martingales,∥∥∥∥∥ 1

n

n∑
k=1

Tk − E [Tk | Fk−1]

∥∥∥∥∥
2

= o

(
(lnn)1+δ

n

)
a.s.
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Finally we have

‖Σn − Σ‖2 ≤

∥∥∥∥∥ 1

n+ 1

n∑
k=1

Tk − E [Tk | Fk−1]

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n+ 1

n∑
k=1

Σn − E [Tk | Fk−1]

∥∥∥∥∥
2

+

∥∥∥∥ 1

n+ 1
Σ0

∥∥∥∥2
= o

(
(lnn)1+δ

n

)
a.s.
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