Homotopy theory of Moore flows (III) - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Homotopy theory of Moore flows (III)

Résumé

The previous paper of this series shows that the q-model categories of $\mathcal{G}$-multipointed $d$-spaces and of $\mathcal{G}$-flows are Quillen equivalent. In this paper, the same result is established by replacing the reparametrization category $\mathcal{G}$ by the reparametrization category $\mathcal{M}$. Unlike the case of $\mathcal{G}$, the execution paths of a cellular $\mathcal{M}$-multipointed $d$-space can have stop intervals. The technical tool to overcome this obstacle is the notion of globular naturalization. It is the globular analogue of Raussen's naturalization of a directed path in the geometric realization of a precubical set. The notion of globular naturalization working both for $\mathcal{G}$ and $\mathcal{M}$, the proof of the Quillen equivalence we obtain is valid for the two reparametrization categories. Together with the results of the first paper of this series, we then deduce that $\mathcal{G}$-multipointed $d$-spaces and $\mathcal{M}$-multipointed $d$-spaces have Quillen equivalent q-model structures. Finally, we prove that the saturation hypothesis can be added without any modification in the main theorems of the paper.
Fichier principal
Vignette du fichier
MooreFlow-3.pdf (555.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04050004 , version 1 (29-03-2023)
hal-04050004 , version 2 (06-06-2023)
hal-04050004 , version 3 (21-08-2023)
hal-04050004 , version 4 (07-12-2023)
hal-04050004 , version 5 (19-11-2024)

Identifiants

Citer

Philippe Gaucher. Homotopy theory of Moore flows (III). 2023. ⟨hal-04050004v4⟩
48 Consultations
37 Téléchargements

Altmetric

Partager

More