Jánossy densities and Darboux transformations for the Stark and cylindrical KdV equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Jánossy densities and Darboux transformations for the Stark and cylindrical KdV equations

Résumé

We study Jánossy densities of a randomly thinned Airy kernel determinantal point process. We prove that they can be expressed in terms of solutions to the Stark and cylindrical Korteweg de Vries equations; these solutions are Darboux tranformations of the simpler ones related to the gap probability of the same thinned Airy point process. Moreover, we prove that the associated wave functions satisfy a variation of AmirCorwinQuastel's integro-dierential Painlevé II equation. Finally, we derive tail asymptotics for the relevant solutions to the cylindrical Korteweg de Vries equation and show that they decompose asymptotically into a superposition of simpler solutions.
Fichier principal
Vignette du fichier
JanossySchrodinger_final.pdf (1.42 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04049175 , version 1 (28-03-2023)

Identifiants

  • HAL Id : hal-04049175 , version 1

Citer

Tom Claeys, Gabriel Glesner, Giulio Ruzza, Sofia Tarricone. Jánossy densities and Darboux transformations for the Stark and cylindrical KdV equations. 2023. ⟨hal-04049175⟩
27 Consultations
45 Téléchargements

Partager

More