Impact of extracellular matrix and collagen network properties on the cervical intervertebral disc response to physiological loads: A parametric study
Résumé
Current intervertebral disc finite element models are hard to validate since they describe multi-physical phenomena and contain a huge number of material properties. This work aims to simplify numerical validation/identification studies by prioritizing the sensitivity of intervertebral disc behavior to mechanical properties. A 3D fiber-reinforced hyperelastic model of a C6-C7 intervertebral disc is used to carry out the parametric study. 10 parameters describing the extracellular matrix and the collagen network behaviors are included in the parametric study. The influence of varying these parameters on the disc response is estimated during physiological movements of the head, including compression, lateral bending, flexion, and axial rotation. The obtained results highlight the high sensitivity of the disc behavior to the stiffness of the annulus fibrosus extracellular matrix for all the studied loads with a relative increase in the disc apparent stiffness by 67% for compression and by 57% for axial rotation when the annulus stiffness increases from 0.4 to 2 MPa. It is also shown that varying collagen network orientation, stiffness, and stiffening in the studied configuration range have a noticeable effect on rotational motions with a relative apparent stiffness difference reaching 6.8%, 10%, and 22%, respectively, in lateral bending. However, the collagen orientation does not affect disc response to axial load.
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Licence |