Article Dans Une Revue Journal of Sound and Vibration Année : 2023

Improving performance of adaptive feedforward noise attenuators using a dynamic adaptation gain

Amélioration des performances des atténuateurs adaptatifs de bruit par pré-compensation en utilisant un gain dynamique d'adaptation

Résumé

The paper explores in detail the use of dynamic adaptation gain/learning rate (DAG) for improving the performance of adaptive feedforward attenuation schemes. The DAG is an ARMA (poles-zeros) filter embedded in the gradient type adaptation/learning algorithms and generalizes the various improved gradient algorithms available in the literature. After introducing the DAG algorithm in the context of adaptive feedforward attenuation schemes and providing relationship with other algorithms, its design is developed. Strictly Positive Real (SPR) conditions play an important role in the design of the DAG. Then the stability issues for adaptive/learning systems using a DAG are discussed. The potential of the DAG is then illustrated by experimental results obtained on a relevant adaptive active noise control system.
Fichier principal
Vignette du fichier
DAG2NEB_T3RT_Ed2.pdf (1.92 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04045279 , version 1 (24-03-2023)
hal-04045279 , version 2 (24-05-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Ioan Doré Landau, Bernard Vau, Tudor-Bogdan Airimitoaie, Gabriel Buche. Improving performance of adaptive feedforward noise attenuators using a dynamic adaptation gain. Journal of Sound and Vibration, 2023, 560 (September), pp.117790. ⟨10.1016/j.jsv.2023.117790⟩. ⟨hal-04045279v2⟩
97 Consultations
49 Téléchargements

Altmetric

Partager

More